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ABSTRACT

We are interested in task-driven robots in our environments
that can communicate with humans. While today’s robots
often communicate with humans to overcome their limited
perception and execution, the relationship between humans
and robots is often one-sided in which the human is pro-
viding all the help to the robot without their own benefits.
Instead, we propose a symbiotic relationship in which the
robot performs tasks for humans and only ask for help to
complete the task successfully. The symbiotic relationship
is a more balanced one in which the robot and human mutu-
ally benefit each other through their actions and help. We
introduce the Visitor-Companion Task for a robot to ac-
company a human visitor to meetings throughout the day
as an example of the relationship and our robot, CoBot, that
implements the task. We discuss both the planning require-
ments and benefits for a robot in a symbiotic relationship as
well as the benefits and limitations of the humans.
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1. INTRODUCTION

While we aim for robots to perform autonomous tasks
in close proximity to humans (e.g., robots in our offices [9]
or malls [10]), currently these robots may not be capable
of completing all actions successfully due to limitations in
perception and execution. To overcome robot limitations
and improve robot performance, we take advantage of hu-
man knowledge and expertise by requesting help from hu-
mans available in the environment. We propose symbiotic
relationships in which robot perform autonomous tasks for
humans and may ask for help from people in the environ-
ment. The symbiotic relationship is a more balanced re-
lationship compared to previous human-robot relationships
and requires that 1) the robot asks during its task to help
humans, 2) the help that the robot requests is within human
capability without special instruction and 3) the robot gives
incentive for the robot to answer through the benefit of its
own task.
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Figure 1: The CoBot Visitor-Companion Robot, de-
signed and built by Mike Licitra

To illustrate the symbiotic relationship, we contribute the
Visitor-Companion Task (see [11] for complete details). Be-
cause the companion problem requires that a human be
present near the robot for a majority of the time, it offers
the flexibility of the robot proactively requesting assistance
from the visitor or other humans when needed. The robot
helps the visitor navigate to each meeting without getting
lost and can perform other tasks for the visitor. The visi-
tor in can answer questions to help the robot overcome its
limitations (e.g., tell the current location) or physically help
the robot (e.g., lift a coffee cup). The visitors actions satisfy
the robots’ subgoals which in turn satisfy the shared goals
of both the human and robot. The help mutually benefits
the robot, which can now complete the task, and the human
when the request is accomplished or expectation is satisfied.

We have implemented this task on a robot, CoBot, that
is both limited in its ability to sense its location in the envi-
ronment or to perform other tasks the visitor might request
(it has no arms to lift objects or open doors). We describe
the symbiotic relationship in detail with examples from the
Visitor-Companion Task and discuss the benefits and and
requirements of the robot in order to implement the rela-
tionship with enough benefit to the humans from which it
requests help using examples from our experiences.

2. SYMBIOTIC RELATIONSHIPS

Many robots require specific human supervisors to be con-
tinuously monitoring its progress to take control or direct
the robot whenever an error occurs (e.g., robots using col-



laborative control [7] and sliding autonomy [4][8]). This su-
pervisory relationship is extensively explored in the context
of Urban Search and Rescue (USAR) by Yanco et. al who
find that this relationship can actually be detrimental to the
success of the a task when the supervisor is unfamiliar with
the interfaces or becomes disoriented and cannot give ac-
curate commands [15]. Unlike systems in which the robot
can seek assistance or confirmation from humans, symbiotic
agents are autonomous and do not control or direct each
others’ actions in any way. All agents can take these actions
to achieve the goals of the team, and coordinate through
synchronous communication actions to request and provide
help to team members.

The agents in symbiotic relationships benefit each other
by requesting and receiving help on actions they could not
have performed alone due to lack of capabilities, coordinating
their actions only when they need help. The help can come
in two forms:

e an agent performs an action for another (e.g., socially
embedded learning [3] in which the human escorts the
robot to the desired location)

e an agent increases another’s capability to complete the
action either through learning or explaining state in-
formation(e.g., learning by demonstration [2] in which
a human tells the robot which state they are in or
which action to take)

While the robot could learn to perform actions for which it
has or can learn capabilities, we do not expect any robot
to be able to complete all actions. For example, a robot
without arms cannot ever lift a cup of coffee. Using our
formalism for planning around these capabilities, if a robot
does eventually acquire arms it can simply stop asking for
help by updating the robot’s capabilities.

Finally, because there may be many possible plans that
achieve the same goals, the agents assign costs to their state
(expectations) which all the agents can use when evaluating
the best actions. When the agents take actions that affect
each other, they take actions to minimize cost of each others’
state while achieving the goal, further benefitting the group.
This relationship is in contrast to those in which the human
or the robot is responsible for helping the other without
benefit in return.

3. STATES AND ACTIONS

Symbiotic agents do not control or direct each others’
actions in any way. Instead, all agents can take actions
to achieve the goals, and coordinate through synchronous
communication actions to request and provide help to other
agents in the environment. In the Visitor-Companion Task,
although both the robot and human have the same goal to
attend all meetings, they are not performing joint actions to-
gether. When possible, the robot acts autonomously, allow-
ing the human to follow it to their meetings, and performs
actions to satisfy both the visitor’s and its own goals.

While the robot maintains state mostly about itself, it also
maintains some state about the visitor in order to evaluate
the visitor’s expectations when deciding which of its actions
it should take. We divide the actions into categories - asyn-
chronous (Execute, Inform, Ask, Request) and synchronous
(Respond, Notify) (see [11] for full details). While the asyn-
chronous actions can happen whenever the preconditions are

met, the synchronous actions require another communica-
tion action be performed before they can be invoked and
affect the state of the visitor. Both humans and the robot
can perform both asynchronous and synchronous actions,
asking/requesting and offering help to benefit each other.

Asynchronously, the robot can inform visitor about differ-
ent locations such as labs that might be of particular inter-
est. The robot can move past these different locations around
the building using the nav-target state to maintain knowl-
edge of where it is going. This autonomous action as well
as open-door and put-coffee include a capability or proba-
bility of success based on the robot’s uncertainty (discussed
later), which can result in either a success or failure. Based
on the failure (e.g., localization error from move), the robot
can ask a human nearby for help. When the visitor responds
to a location question, the robot processes the response and
updates its location information to continue moving. Oth-
erwise, the robot waits for the action to be taken, updates
its state, and continues with its plan.

4. CAPABILITIES

The agents in symbiotic relationships benefit each other
by requesting and receiving help on actions they could not
have performed alone due to lack of capabilities, coordinating
their actions only when they need help. The robot may
have limitations, either due to state uncertainty or physical
limitations which may cause some of its actions to fail. The
visitors do not know their way around the building and do
not know how the robot works to help it all the time.

4.1 Robot Capabilities

Unlike methods which require training before the robot
can be deployed (e.g., learning by demonstration [2] and so-
cially embedded learning [3]), the robot asks for help while it
is performing a task autonomously and either does not have
any ability to perform an action or cannot determine which
action to take. A robot can ask a human for help when it
cannot determine its own state with certainty, and therefore
cannot determine what action to take. Specifically, the robot
asks a clarification question to determine which state it is
in. Because it acts autonomously, when its state is known,
it can plan (or replan) its actions and execute them without
further human intervention. Unlike learning by demonstra-
tion in which a robot does not know what action to take,
the robot is given a policy a priori but does not know which
state it is in to take the action.

While the robot could learn to distinguish states through
asking questions, we do not expect any robot to be able
to complete all actions. In symbiotic relationships, a robot
can ask for human help when its plan to complete a task
requires actions it cannot perform itself. For example, a
robot without arms cannot ever lift a cup of coffee. If the
robot’s task requires it to bring coffee to someone, it must
ask a human in the environment to pour the coffee and put
it on the robot.

In order to model these limitations, some actions have
both success and failure effects that happen according to
capabilities - the probability of success p. If there is no
chance of completing an action, p = 0. For example, if
the robot does not have arms, there is no change it could
perform open-door or put-coffee itself. These actions will
always result in failure and the robot will always request
help from a human near the coffee maker with action (ask



giveCoffee). When p > 0, the robot may not complete
an action successfully due to the uncertainty in the robot
models. For example, in the move action, the robot may
be uncertain of its location which contributes its successful
completion.

The ability of a robot to ask these kinds of questions sig-
nificantly extends its abilities. While a robot’s tasks have
been previously limited by its physical structure, it can now
accomplish many more by asking for help. Additionally, a
robot can more successfully complete tasks by reducing its
state uncertainty. For example, CoBot asks for help when
it cannot determine its location with high certainty (more
details in [11]). While CoBot can navigate autonomously,
with help from a visitor it is able to navigate to goals nearly
10% faster than autonomous navigation. Because the ques-
tions reduce its uncertainty, it misses fewer turns and stops
fewer times to replan its path to the goal.

4.2 Human Capabilities

While a robot can ask for help when it lacks capabilities, it
should also recognize human capabilities and expectations.
While human supervisors are very accurate when helping
the robot, but they cannot participate in the environment
during monitoring and are very time-expensive to require
as we scale up the number of robots in the environment.
We would like any human in the environment who does not
know about how the robot works to answer as accurately
as possible under these conditions. However, humans in the
environment may not always be accurate when answering
questions. They may not understand the question or they
may not know the answer. They may be busy and unable
to spend a lot of time helping the robot. The robot may
be asking a question related to something that happened
in the past and the human might not have been aware of
the environment at the time. Recently, much research has
focused both on modifying interfaces to make it easier for
supervisors to understand the feedback that is required (e.g.,
[1]{13]) and by taking into account inaccuracies in feedback
to make the robots more robust (e.g., [5]).

In order for humans to answer questions as accurately as
possible, a robot will need to ground them in its frame of ref-
erence before asking for help (e.g., [6][14]). We performed
experiments with two different robot tasks to understand
what kinds of information a robot might need to tell a hu-
man when it asks for help in determining its state - a shape
recognition task on a Wizard of Oz’d robot and the localiza-
tion talk on CoBot performing the Visitor-Companion Task.
In these studies, we tested whether each combination of four
kinds of robot state information affected the accuracy of the
responses humans gave: a description of the context of the
robot, its prediction of its state, its uncertainty in that pre-
diction, and an additional question asking humans to further
describe the state (described further in [12]).

The results of our initial shape recognition task show that
providing users all of this information together (context, pre-
diction, uncertainty, and asking an extra question) improved
the accurate of their responses to the robot the most. How-
ever, because the shape recognition robot was Wizard of
0Oz’d, we tested users’ responses when CoBot asked where
it was (e.g., "Can you point to where we are on this map
of the building”) while taking a tour of the building. Par-
ticipants in this study were randomly assigned to one of
five conditions: 1) no state information, 2) uncertainty and

context, 3) uncertainty and prediction, 4) uncertainty, con-
text, and prediction, and 5) uncertainty, context, prediction,
and extra question (the more accurate from the first study).
Though the experimenter remote-controlled the robot to
each location in the building and triggered the appropriate
responses, the participants believed the robot was moving
autonomously. After participants completed the 15-minute
tour containing 13 questions, they were given a survey about
their experiences with the robot.

We collected the clicks on the map for each participant
and calculated the Euclidean distance from the clicks to the
actual robot location. Because the distribution of these dis-
tances was not a Normal Distribution, we performed a log
transformation to normalize the data. We, then, analyzed
the results of the localization test of log distances with a
mixed model with participant ID as a random effect and
the question condition as a fixed effect analyzed using the F
statistic. Our results show there are statistically significant
differences between the five question conditions (F(4,38.53)
= 3.93, p < 0.001). We used Contrasts to analyze the
whether there were statistically significant differences be-
tween our guidelines from the shape recognition study and
the other four conditions tested. Running four contrasts
means significance is measured at .05/4 = 0.0125.

Although we analyzed the log distances, we report the true
distances in meters for clarity (Figure 2). Participants who
received no state information clicked further away from the
robotOs true location (4.5 meters) compared to those two
received all four kinds of state information (1.65 meters)
(F(1,38.45) = 22.17, p < 0.001). Participants who received
only uncertainty and context or uncertainty and predictions
clicked 2.76 and 2.74 meters respectively from the true lo-
cation, a marginally significant difference compared to the
four kinds of state information (F(1,38.9) = 3.18, p = 0.082)
(F(1.,38.7) = 3.78, p = 0.059). While the participants with
all four kinds of state information show a 1 meter improve-
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Figure 2: Our results show that providing context,
prediction, uncertainty, and an additional question
about context caused participants’ responses to be
most accurate compared to other combinations of
the state information.



ment to these two conditions, there was a larger range of
clicks leading to only marginal significance. Finally, par-
ticipants who received context, uncertainty, and prediction
clicked significantly further from the true location (2.94 me-
ters) than those with all four kinds (F(1,37.6) = 8.17, p <
0.001).

While the robot can increase the accuracy capabilities of
humans in the environment using our findings, it does not
take into account the expectations of the human about the
behaviors of the robot.

S. EXPECTATIONS

In symbiotic relationships, because there may be many
possible plans that achieve the same goals, both humans and
robots assign costs to their state (ezpectations) which all the
agents can use when evaluating the best actions. When the
agents take actions that affect each other, they take actions
to minimize cost of each others’ state while achieving the
goal, further benefitting the group. This relationship is in
contrast to those in which the human or the robot is respon-
sible for helping the other without benefit in return. For
example, humans in the environment would stop answering
the robot if it asked too many questions without providing
the human any benefit.

In order to understand how the symbiotic relationship
(specifically, the robots’ questions) affects the visitors in the
Visitor-Companion Task, we invited five participants to par-
ticipate in a four-meeting schedule. The participants were
true visitors and had never been in the building before. Par-
ticipants were told that the CoBot could assist them in the
following ways on the way to their meetings:

e bring drinks to meetings

e providing additional information about meeting hosts
(by displaying the host’s website)

For each participant, CoBot gave the same information in
each variation of the condition and asked the roughly the
same number of questions about where the robot was in the
building. After the visitors finished their schedule, we asked
them to rate the robots’ usefulness in its abilities as well as
the number of questions the robot asked as it navigated (too
many to too few).

While participants mostly felt the robot could have asked
fewer questions, they had different opinions about how many
were too many - reflecting different costs associated with the
questions. When we combine the robot’s abilities and the
questions into a complete experience, we found that four out
of five participants said they benefitted from the navigation
guidance and other assistance and would use CoBot again,
even thought they felt the robot asked them for help too
many times. The one participant who would not use it again
placed high cost on asking for help and said he would use it
again if it asked fewer questions.

While the robot only necessarily requires state and actions
in order to complete a task, we find that the robot should
maintain an understanding of human expectations in order
to choose which actions to take. Using these expectations,
the robot can choose the best plan, the best action, or the
best time to take an action that minimizes the cost to the
visitor. For example, the visitor may not want to be late to
any meeting and thus the robot would incur a high cost if it
takes actions that result in the visitor being late. Addition-
ally, while the robot may not always be able to avoid asking

for help, it can ask raise the threshold of how uncertain it
is to avoid asking questions if it may be able to perform the
action itself. We believe that acting based on expectations
could increase the usability of the robots and the willingness
of humans to help them over long periods of time.

6. CONCLUSION

In this work, we contribute a robot agent capable of be-
ing in a symbiotic relationship with humans. We introduce
the Visitor-Companion Task as an example where a human
visitor and a companion robot have joint goals and coordi-
nate as a team, but interact asynchronously. The robot can
ask for help from the human to overcome some of its limi-
tations (e.g., possible location confusion or need to open a
door). The symbiotic relationship is a more balanced one in
which the robot is expected to help the humans and provide
incentive for answering its questions. We discuss both the
benefits for a robot in a symbiotic relationship as well as the
benefits and limitations of the humans.
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