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Abstract— With a growing number of robots performing
autonomously without human intervention, it is difficult to
understand what the robots experience along their routes
during execution without looking at execution logs. Rather
than looking through logs, our goal is for robots to respond
to queries in natural language about what they experience and
what routes they have chosen. We propose verbalization as the
process of converting route experiences into natural language,
and highlight the importance of varying verbalizations based on
user preferences. We present our verbalization space represent-
ing different dimensions that verbalizations can be varied, and
our algorithm for automatically generating them on our CoBot
robot. Then we present our study of how users can request
different verbalizations in dialog. Using the study data, we learn
a language model to map user dialog to the verbalization space.
Finally, we demonstrate the use of the learned model within a
dialog system in order for any user to request information about
CoBot’s route experience at varying levels of detail.

I. INTRODUCTION

We have been investigating autonomous mobile service
robots for several years. Our robots perform services that
involve moving between locations in our buildings, just
traveling to a destination, transporting items from one place
to another, or accompanying visitors to offices. Our novel
and robust solutions to many challenges of such autonomous
behavior have led to the autonomous navigation of more than
1,000km by the robots within the last 3-4 years [1].

Because of the success of the autonomous algorithms,
our and other robots consistently move in our environ-
ments and they persistently perform tasks for us without
any supervision. With robots performing more autonomous
behaviors without human intervention, we do not know much
about their paths and experience when they arrive at their
destinations without delving into the extensive log files. In
this work, we propose a new research challenge, namely how
to have robots respond to queries, in natural language, about
their autonomous choices including their routes taken and
experienced. We are interested in ways for robots to verbalize
(an analogy to visualization) their experiences via natural
language.

We notice that different people in the environment may
be interested in different specific information, for specific
parts of the robot’s experience, at different levels of detail,
and at different times. A one-size-fits-all verbalization will
not satisfy all users. For example, as robotics researchers
interested in debugging our robots’ behaviors, we often
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would like our robot to recount its entire path in great detail.
On the other hand, an office worker may only want a robot
to identify why it arrived late. These variances in preferences
are echoed in prior literature in which autonomous systems
explain their behavior [2], [3], [4].

In prior work, we have introduced verbalization spaces
as a way to capture the fact that descriptions of the robot
experience are not unique and can greatly vary in a space
of different dimensions. We introduced three dimensions of
our verbalization space, namely abstraction, specificity, and
locality, and associate different levels to each dimension.
Based on the underlying geometric map of an environment
used for route planning in addition to semantic map an-
notations, our automated verbalization algorithm generates
different explanations as a function of the desired preference
within the verbalization space. We present a summary of this
prior work including an example verbalization for our CoBot
robot in our environment.

In this work, we pursue our research addressing the fact
that people will want to request different types of verbal-
izations through dialog, and may even want to revise their
requests through dialog as the robot verbalizes it’s route
experiences. We present a crowdsourced online study in
which participants were told to request types of information
represented in our verbalization space. We then provide the
robot’s verbalization response and asked the participants
to write a new request to change the type of information
in the presented verbalization. Using the verbalization re-
quests collected from the study, we learn a mapping from
the participant-defined language to the parameters in our
verbalization space. We show the accuracy of the learned
language model increases in the number of participants in
our study, indicating that while the vocabulary was diverse
it also converged to a manageable set of keywords with a
reasonable participant sample size (100 participants). Finally,
we demonstrate human-robot dialog that is enabled by our
verbalization algorithm and our learned verbalization space
language classifier.

II. RELATED WORK

We identify three main categories in the literature on au-
tomatically generating explanations or summaries of planned
or perceived behavior: 1) intelligibility or explanation of
machine learning algorithms, 2) summarizing perceived be-
havior, and 3) generating directions for humans to follow.

One of the main focus in Human-Computer Interaction
research is developing ways for machine learning applica-
tions to intelligibly explain their reasoning to users (e.g.,
for context-aware systems [2]). The studies performed on



intelligibility focus in multiple directions. In [5], the authors
look at how users can query applications for information or
explanations. The focus of [6], [7] is to explore how the gen-
erated explanation can affect the users’ mental model of how
the applications work. Last, [8] shows how automatically
generated explanation can increase the users trust. Another
relevant problem is providing summaries or generating narra-
tive of perceived behavior. This problem has been addressed
in many different scenarios such as: Robocup soccer games
[9], [10], wartime exercises [11], video conferencing sessions
[12], or sports games [13]. Finally, automatically generating
navigation instructions and dialog for people to follow and
understand has become, more and more, a relevant problem
in GPS applications (e.g., [14]) and robotics (e.g., [15], [3],
[4]).

A common aspect of prior work is the need to vary ex-
planations and summaries according to the user’s preference.
In [16] the authors show how human direction givers do not
generate the same directions for every person. Recently, [3]
found that navigation directions should: 1) provide differing
levels of specificity at different locations in the route and
2) use abstract landmarks in addition to more concrete
details. Although the need for parametrized summaries is
well documented, none of the prior work, to our knowledge,
measures those parameters and contributes an algorithm for
varying them.

Our previous work on verbalization space and verbaliza-
tion algorithm [17] is briefly summarized in Section III. The
focus of this work is on how a user might request a variety
of verbalizations. The literature of both Human-Human and
Human-Robot Interaction focus on how to request additional
information when the instructions provided are not clear
[18], [19], [20], [21]. Our approach differs as, rather than
focusing on changing or repairing instructions when there is
a communication breakdown, we allow users to proactively
request language variation based on preferences. The con-
tribution of our experiment is twofolds, first to understand
the user’s language for specifying what information they
would want in a verbalization, and second to understand
user’s language to change a verbalization to receive new or
different information. We then create a predictive models and
demonstrate how we can use them to predict the verbalization
preference.

III. ROUTE VERBALIZATION

Previously, we have defined verbalization as the process
by which an autonomous robot converts its own experience
into language. We represent the variations in possible expla-
nations for the same robot experience in the verbalization
space (VS). Each region in verbalization space represents a
different way to generate explanations to describe a robot’s
experience by providing different information as preferred
by the user. Specifically, given an annotated map of the
environment, a route plan through the environment, and a
point in our verbalization space, our Variable Verbalization
Algorithm generates a set of sentences describing the robot’s
experience following the route plan. We summarize each of

these aspects in turn and then provide example verbalizations
for our indoor mobile robot CoBot.

A. Environment Map and Route Plans

Our robot maintains an environment map with semantic
annotations representing high level landmarks of interest. We
define the map M = 〈P,E〉 as set of points p = (x, y,m) ∈
P representing unique locations (x, y) locations for each
floor map m, and edges e = 〈p1, p2, d, t〉 ∈ E that connect
two points p1, p2 taking time t to traverse distance d.

The map is annotated with semantic landmarks repre-
sented as room numbers (e.g., 7412, 3201) and room type
(office, kitchen, bathroom, elevator, stairs, other). The map
is also annotated with lists of points as corridors which
typically contain offices (e.g., “7400 corridor” contains (of-
fice 7401, office 7402, ...)) and bridges as hallways between
offices (e.g., “7th floor bridge” contains (other 71, other 72)).

Using our map, a route planner produces route plans as
trajectories through our map. The route plan is composed
of a starting point S, finish point F , an ordered list of
intermediate waypoints W ⊂ P , and a subset of edges in E
that connect S to F through W . Our route planner annotates
route plans with turning points (e.g., [22]) to indicate the
locations where the robot turns after moving straight.

B. Verbalization Space Components

For any given route plan, many different verbalization
summaries can be generated. We formalize the space of
possible verbalizations as the verbalization space (VS) con-
sisting of a set of axes or parameters along which the
variability in the explanations are created. For the purpose
of describing the path of the CoBot, our VS contains three
orthogonal parameters with respect to the environment map
and route plan – abstraction, locality, and specificity. These
parameters are well-documented in research, though they are
not exhaustive ([2], [3], [4]).

Abstraction A: Our abstraction parameter represents the
vocabulary or corpus used in the text generation. In the most
concrete form (Level 1), we generate explanations in terms
of the robot’s world representation, directly using points
(x, y,m) in the path. Our Level 2 derives angles, traversal
time and distances from the points used in Level 1. Level
3 abstracts the angles and distances into right/left turns
and straight segments. And finally at the highest level of
abstraction, Level 4 contains location information in terms
of landmarks, corridors, and bridges from our annotated map.

Locality L: Locality describes the segment(s) of the route
plan that the user is interested in. In the most general case,
the user is interested in the plan through the entire Global
Environment. They may only be interested in a particular
Region defined as a subset of points in our map (e.g., the
8th floor or Building 2), or only interested in the details
around a Location (e.g., 8th floor kitchen or office 4002).

Specificity S: Specificity indicates the number of concepts
or details to discuss in the text. We reason about three levels
of specificity, the General Picture, the Summary, and the
Detailed Narrative. The General Picture contains a short
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Fig. 1. Example of our mobile robot’s planning through our buildings. Building walls are blue, the path is green, the elevator that connects the floors is
shown in red and shown in black text are our annotations of the important landmarks.

description, only specifying the start and end points or
landmarks, the total distance covered and the time taken.
The Summary contains more information regarding the path
than General Picture, and the Detailed Narrative contains a
complete description of the route plan in the desired locality,
including a sentence between every pair of turning points.

C. Variable Verbalization Algorithm

Given the route plan, the verbalization preference in terms
of (A,L, S), and the environment map, our Variable Verbal-
ization (VV) Algorithm translates the robot’s route plan into
plain English (pseudocode in Algorithm 1). We demonstrate
algorithm with an example CoBot route plan from starting
point “office 3201” to finish point “office 7416” as shown
in Figure 1. In this example, the user preference is (Level 4,
Global Environment, Detailed Narrative).

Algorithm 1 Variable Verbalization (VV) Algorithm
Input: path, verb pref, map Output: narrative

//The verbalization space preferences
1: (a, l, s)← verb pref

//Choose which abstraction vocabulary to use
2: corpus ← ChooseAbstractionCorpus(a)

//Annotate the path with relevant map landmarks
3: annotated path ← AnnotatePath(path, map, a)

//Subset the path based on preferred locality
4: subset path ← SubsetPath(annotated path, l)

//Divide the path into segments, one per utterance
5: path segments ← SegmentPath(subset path, s)

//Generate utterances for each segment
6: utterances ← NarratePath(path segments, corpus, a, s)

//Combine utterances into full narrative
7: narrative ← FormSentences(utterances)

The VV Algorithm first uses abstraction preference a to
choose which corpus (points, distances, or landmarks) to use
when generating utterances (Line 2). Since the abstraction
preference in the example is Level 4, the VV algorithm
chooses corpus of landmarks, bridges and corridors from the
annotated map. The VV algorithm then annotates the route
plan by labeling the points along the straight trajectories
by their corridor or bridge name and the route plan turning
points based on the nearest room name.

Once the path is annotated with relevant locations, the al-
gorithm then extracts the subset of the path that is designated
as relevant by the locality preference l (Line 4). In this case,
the locality is Global Environment and the algorithm uses the
entire path as the subset. The VV algorithm then determines
the important segments in the path to narrate with respect to
the specificity preference s (Line 5). For Detailed Narratives,
our algorithm uses edges between all turning points, resulting
in descriptions of the corridors and bridges, landmarks, and
the start and finish points:{

s1: Office 3201, s2: Corridor 3200, s3: Elevator,
s4: 7th Floor Bridge, s5: 7th Floor Kitchen,
s6: Corridor 7400, s7: Office 7416

}
The VV Algorithm then uses segment descriptions and

phrase templates to compose the verbalization into English
utterances (Line 6). Each utterance template consists of a
noun N , verb V , and route plan segment description D to
allow the robot to consistently describe the starting and finish
points, corridors, bridges, landmarks, as well as the time it
took to traverse the path segments. The templates could also
be varied, for example, to prevent repetition by replacing
the verbs with a synonym (e.g., [10]). The following are the
templates used on CoBot for the Level 4 abstractions. We
note next to the D whether the type of landmark is specific
(e.g., the template must be filled in by a corridor, bridge, etc),
and we note with a slash that the choice of verb is random.

• “[I]N [visited/passed]V the [ ]D:room”
• “[I]N [took]V the elevator and went to the [ ]D:floor”
• “[I]N [went through/took]V the [ ]D:corridor/bridge”
• “[I]N [started from]V the [ ]D:start”
• “[I]N [reached]V [ ]D:finish”

The template utterances are joined using ”then”s but could
also be kept as separate sentences. Using the filled-in tem-
plates, the VV Algorithm generates the following verbaliza-
tion (Line 7):

I started from office 3201, I went through the 3200
corridor, then I took the elevator and went to the
seventh floor, then I took the 7th floor bridge, then
I passed the 7th floor kitchen, then I went through
the 7400 corridor, then I reached office 7416.



IV. DIALOG TO REVISE VERBALIZATIONS

Our Variable Verbalization Algorithm takes as input a
user’s explanation request (a, l, s) in terms of level a of
Abstraction, l of Locality, and s of Specificity. We further
envision the user to engage in a dialog with the robot to
incrementally revise their verbalization preferences. In this
section, we contribute an approach for mapping the user’s
dialog onto a verbalization preference, along the dimensions
of the Verbalization Space (VS).

As an example, consider the following request to the
robot for an explanation: “Please, tell me exactly your
experience for your whole path to get here.” Since this
sentence refers to the “whole path,” the robot uses the
Global Environment level in the Locality dimension of the
Verbalization Space. Furthermore, as the user uses the term
“exactly,” the explanation should be at the level of Detailed
Narrative in the dimension of Specificity. Finally, although
no language feature in the request directly refers to a level of
Abstraction, the robot may use a high level of Abstraction,
as its default. We then concretely address the problem of
dialoguing with the robot to revise an explanation. Once a
user asks for and receives a route verbalization, they could
be interested in refining such description. If we continue the
above example, after the robot offers a detailed description
of its path, the user could ask: “OK robot, now tell me
only what happened near the elevator.” The user is hence
asking a revised summary of the task executed, where the
language should map the explanation to the same values for
Abstraction and Specificity as in the initial description, but
now focusing the Locality on the region of the elevator.

Our learned mapping from language-based requests to
points in the verbalization space allows the user to dynami-
cally refine previous preferences through dialog.

A. Data Collection

In order to enable a robot to correctly infer the user’s initial
VS preferences as well as how to move in the VS to refine
the preferences, we gathered a corpus of 2400 commands
(available at link) from a total of 100 participants through an
Amazon Mechanical Turk survey (www.mturk.com) in which
each participant was asked 12 times to request information
about our robot’s paths and then refine their request for
different information. Table I shows a sample of the corpus.

Please give me a summary of statistics regarding the time that
you took in each segment.
Can you tell me about your path just before, during, and after
you went on the elevator?
How did you get here?
Can you please eliminate the time and office numbers?
What is the easiest way you have to explain how you came
to my office today?
Robot, can you please further elaborate on your path and give
me a little more detail?

TABLE I
SAMPLE SENTENCES FROM THE CORPUS

After giving consent to partake in the survey, the users
were given instructions in order to complete the survey.
These instructions included: 1) a short description of the

robot capabilities (i.e., execute task for users and navigate
autonomously in the environment) and 2) the context of the
interaction with the robot. In particular, we asked the users
to imagine the robot had just arrived at their office and they
were interested in knowing how it got there. Each time the
robot arrived at their office, the participants were given:

• A free-response text field to enter a sentence requesting
a particular type of summary of the robot’s path,

• An example of the summary the robot could provide,
and finally

• A second free-response text field to enter a new way to
query the robot assuming their interest changed.

This process was repeated 12 times for different parts of
our VS. Figure 2 shows the first page of the survey.

Fig. 2. The survey used to gather out the data corpus. The instructions
above the two text fields read: “How would you ask the robot to thoroughly
recount its path” and “You now want the robot to give a briefer version of
this summary. How would you ask for it?”

We note that the instructions to our survey purposefully
did not mention the concept of verbalization and did not
introduce any of the three dimensions of the verbalization
space. Users hence were not primed to use specific ways
to query the robot. However, as the sentences in our corpus
should cover the whole verbalization space, when asking for
the initial sentence on each page, we phrased our request in a
way that would refer to a point on one of the axis of the VS.
As an example, in Figure 2, we ask for a sentence matching
a point with Detailed Narrative Specificity, and therefore we
ask “How would you ask the robot to thoroughly recount
its path?”. The second sentence we requested on each page
refers to a point on the same axis but with opposite value.
In Figure 2, we look for a sentence matching a point with
General Picture specificity, and we ask the user “You now
want the robot to give you a briefer version of this summary.
How would you ask for it?”. In the first 6 pages of the survey,
we asked for an initial sentence matching a point for each
possible dimension (Abstraction/Specificity/Locality) at the
extreme values. The same questions were asked a second
time in the remaining 6 pages of the survey. Table II shows
the phrasing for each dimension/value pair.



Abstraction High “How would you ask the robot for an
easy to read recount of its path?”

Low “How would you ask the robot for a
recount of its path in terms of what the
robot computes?”

Specificity High “How would you ask the robot to thor-
oughly recount its path?”

Low “ How would you ask the robot to
briefly recount its path?”

Locality High “How would you ask the robot to fo-
cus its recounting of the path near the
elevator?”

Low “How would you ask the robot to re-
count each part of its entire path?”

TABLE II
PHRASING OF SURVEY INSTRUCTIONS

V. LEARNING DIALOG MAPPINGS

We frame the problem of mapping user dialog to VS di-
mensions of Abstraction, Specificity and Locality as a prob-
lem of text classification. In particular, we consider the six
possible labels corresponding to two levels, high or low
extremes, for each of the three axes of the verbalization
space. The corpus gathered from the Mechanical Turk survey
was minimally edited to remove minor typos (e.g., ‘pleaes’
instead of ‘please’) and automatically labeled. The automatic
labeling of the corpus was possible since the ground truth
was derived directly from the structure of the survey itself.

To perform the classification, we tried several combi-
nations of features and algorithms. Here, we report on
the most successful ones. The features considered for our
classification task are unigrams, both in their surface and
lemmatized form, bigram and word frequency vectors. We
also considered two different algorithms, a Naive Bayes
Classifier and Linear Regression. Figure 3 shows the results.

Fig. 3. Experimental results. On the X axis the number of users used to
train and test the model, on the Y axis the accuracy achieved.

The X axis shows the number of participants, randomly
selected from the pool of 100 survey takers, used to train
the model. The Y axis, shows the average accuracy over
10 leave-one-out cross validation tests. As the number of
participants increases, all of the proposed approaches im-
prove in performance, as the size of the corpus increases
proportionally. Once a robot is deployed and is able to gather
more and more sentences asking to verbalize a path, it will

then further improve the accuracy of the classification.
When trained on the whole corpus, Logistic Regression

achieves the best results with 73.37% accuracy. The accuracy
for the Naive Bayes Classifer is 72.11%, 71.35%, and
69% when trained using unigrams, lemmatized unigrams,
and bigrams, respectively. Interestingly, the Bayes Classifier
and Linear Regression perform similarly with data points
differing by less than 2%. Lemmatizing the unigrams does
not appear to have a strong effect on the classifier accuracy.
Finally, using bigrams negatively effects the classification
accuracy. While bigrams encode more information than
unigrams, bigrams also naturally produce a more sparse
representation of the sentence, which coupled with the size
of our corpus, leads to lower accuracy rates.

All the models were trained on the whole corpus and
therefore their use is twofold. First, we can use them to infer
the correct point in the VS when a user initially queries the
robot. Second, we can use the models to dynamically update
these values during the dialog. Since our best model achieves
73.37% accuracy the robot is not always going to provide
the correct level of information when verbalizing its task.
This should not be considered a problem as, using the same
models enables the iterative query refinement through dialog.

A. Demonstration

We demonstrate how the learned dialog mapping guides
the verbalization process. In this example, we used the Naive
Bayes Classifier trained using only unigrams as features to
predict the labels of the sentences. We start with the initial
sentence given by the user:

USER: Please tell me exactly how you got here.

Our classifier finds the most likely label for the sentence
Detailed Narrative, corresponding to point 1 in Figure 4.
Accordingly, the robot describes its task:

ROBOT: I started at office 7717. I went by office
7416 and took 28 seconds. I went through
corridor 7400 and took 42 seconds. I went
by the open area 730 and took 28 seconds.
I reached office 7501.

USER: OK, now only tell me about the open area.

Once again the robot classifies the input sentence returning
the label Locality Location-specific. Our algorithm now
updates the parameters of the verbalization algorithm by in-
creasing the value of locality to produce a new summary, now
corresponding to the transitionfrom point 1 to 2 in Figure 4.

ROBOT: Near open area 730. I started from office
7407 on floor and went through corridor-
7400.

USER: Can you rephrase in terms of what you
computed?

This final command is classified as Level 1 Abstraction. The
parameters of the algorithm are updated as shown in the
transition from 2 to 3 in Figure 4 and the robot produces a
third summary of its task.



Fig. 4. Demonstration of movements in the verbalization space. On the left the path the robot is going to verbalize. On the right three different point in
the verbalization space.

ROBOT: Near O730. Start point is (-1.36, 31.22) on
floor GHC7, end point is (10.79, 30.20) on
floor GHC7. Start point is (10.79, 30.20)
on floor no.GHC7, end point is (16.0,
30.63) on floor no.GHC7.

This dialog sequence demonstrates how the verbalization
algorithm, coupled with text classification, allows the robot
to understand natural language commands to verbalize its
task at different levels. Moreover the user is able to specify
what type of information the robot is going to provide
through an interactive dialog, to further refine this informa-
tion without delving into execution logs.

B. User Study

Finally, to further demonstrate our approach, we run a
user study involving 7 participants. Each participant was
first introduced to our CoBot robot and its capabilities,
namely to autonomously navigate in the environment and
perform item transportation or people guiding tasks. Next,
we explained the concept of verbalization space and its
three dimensions, Abstraction, Locality, and Specificity. Last,
we pointed out that goal of the study was to evaluate the
robot’s ability to properly explain the path it had traversed.
After this explanation phase, the participants were given an
initial verbalization of the robot’s path. This verbalization
was generated by randomly selecting a point in the VS. The
subjects were then instructed to provide a sentence to revise
the explanation, such that the verbalization would move in a
specific direction along one of the three dimensions. The
robot then provided a new verbalization by applying the
learned classifier, and the users were asked if the revision
provided matched, did not match, or almost matched their
expectations. Each user dialoged about 4 paths of the robot,
and the dialog was repeated 3 times, each for each direction
of the VS. There was hence a total of 84 different exchanges
between a user and the robot, which were logged.

We first analyze the accuracy of the classifier, in terms
of the desired dimension and direction corresponding to
the language input. Even if the training from the collected
corpus is clearly still limited, the classifier was correct in
54.76% of the cases, i.e., in 46 out of the 84 completely new
requests given by the users. In 82,6% of these interactions,
the users found that the new verbalization provided matched
or almost matched their expectations. In the second step
of our analysis, we looked at the remaining 38 interactions

where the label returned by the classifier did not match the
instructions provided. Surprisingly, the users reported that
the verbalization matched their expectations in 21.05% of
the cases. By a closer inspection, we found out that the
users were confused with the instructions and did not match
the directions and dimensions in the verbalization space.
For instance, when asked to provide a sentence to move
the verbalization towards a lower specificity (i.e., a shorter
description), one of the users asked “Tell me about your
whole path.” The classifier labeled this sentence as low
locality, the robot extended the verbalization, previously
limited in the surroundings of an elevator, to the entirety
of the path and matched the users expectations. Table III
summarizes the results of the users study.

Match Almost Match Don’t Match
Correct Label 32 6 8 46

Incorrect Label 8 6 24 38
84

TABLE III
RESULTS OF THE USERS STUDY.

In conclusion, if we consider both the cases where the
classifier returned the label meant in the instructions and the
cases where the users considered the new verbalization to
match their expectations, the dialog was able to provide a
correct verbalization in 64.28% of the cases.

VI. CONCLUSIONS

A significant challenge with autonomous mobile robots
is understanding what they are doing when there is no
human around. We propose verbalization as the process of
converting sensor data into natural language to describe
a robot’s experiences. We review our verbalization space
representing different dimensions that verbalizations can be
varied, and our algorithm for automatically generating them
on our CoBot robot. Then we present our study of how users
can request different verbalizations in dialog. Using 2400
utterances collected from the study, we demonstrate that it
is possible to learn a language model that maps user dialog
to our verbalization space. With greater than 70% accuracy,
a robot that uses this model can predict what verbalization
a person expects and refine the prediction further through
continued dialog. We demonstrate this ability with example
verbalizations for CoBot’s route experiences.
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