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ABSTRACT 
The success of Big Data relies fundamentally on the ability of a 
person (the data scientist) to make sense and generate insights from 
this wealth of data. The process of generating actionable insights, 
called data exploration, is a difficult and time-consuming task. Data 
exploration of a big dataset usually requires first generating a small 
and representative data sample that can be easily plotted and 
viewed, managed and interpreted to generate insights. However, 
the literature on the topic hints at data scientists only using random 
sampling with regular sized datasets and it is unclear what they do 
with Big Data. In this work, we first show evidence from a survey 
that random sampling is the only technique commonly used by data 
scientists to quickly gain insights from a big dataset despite 
theoretical and empirical evidence from the active learning 
community that suggests benefits of using other sampling 
techniques. Second, to evaluate and demonstrate the benefits of 
other sampling techniques, we conducted an online study with 34 
data scientists. These scientists performed a data exploration task 
to support a classification goal using data samples from more than 
2 million records of editing data from Wikipedia articles, generated 
using different sampling techniques. The study results demonstrate 
that sampling techniques other than random sampling can generate 
insights that help to focus on different characteristics of the data, 
without compromising quality in a data exploration. 

Keywords: Visual Knowledge Discovery, Data Filtering, Human-
Computer Interaction 

Index Terms: CCS→ Human-centered computing→ Human
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1. INTRODUCTION
The expectations for Big Data are high and varied; they range from 
improved and more efficient healthcare [14] to crime-spot 
emergence prediction [26]. While Big Data algorithms continue to 
improve, its success relies upon the ability of a data scientist to 
detect patterns, determine useful features and visualizations and 
generate actionable insights from the data. In this article, we refer 
to data scientists as individuals whose job consists on extracting 
knowledge from large volumes of data in various forms using 
statistics, data mining or machine learning. While recent studies of 
data scientists examine their entire process from attaining data to 
reporting results [8,9], in this work we focus only on data 
exploration tasks that often occur throughout the process. Data 
exploration consists mostly of tasks that help data scientists 
understand their data by gaining insights into the phenomena being 
modeled, assess the quality of the data, and find or create features 
that improve model accuracy. Data exploration includes the acts of 

creating graphs and plots, estimating statistics, transforming the 
data, finding anomalies, etc. These steps however are not always 
feasible for data scientists to perform on entire Big Data datasets. 
A single analysis can take hours to compute on a Big Data dataset 
[6], and in some cases it is beyond the capabilities of the available 
computing infrastructure [9,14]. With a high cost in time and 
resources to analyze the dataset, this restricts a data scientist’s 
ability to perform data exploration. In order to overcome these 
challenges, a data scientist can create smaller data samples to be 
able to perform data exploration in a timely manner. These small 
data samples must be statistically sound in order to offer an 
unbiased and correct representation of the full dataset and, as a 
result, some data scientists have reported avoiding or limiting their 
use to avoid introducing bias [8,11].  
Nonetheless, sampling seems to be an important approach for 
exploring large datasets. However, to our knowledge there is no 
evidence in the literature about how data scientists use sampling 
techniques with Big Data, nor how those sampling techniques 
affect the quality or focus of their insights. Based on the lack of 
tools for sampling Big Data available today, we hypothesize that 
data scientists are using random sampling, if they are sampling their 
data at all despite evidence from the active learning community on 
the advantages of using a variety of sophisticated sampling 
methods [5,24]. A study of data scientists also suggests that using
multiple sampling strategies on the same dataset would enable 
more effective evaluation of datasets [9]. 
We first surveyed 22 data scientists who work on large datasets and 
confirmed that data scientists are using only random sampling or 
pseudo-random sampling. However we also found that if multiple 
sampling techniques were available to them, a majority of 
participants believed that this would decrease the time it takes to 
explore their data and make insights, and also improve the quality 
of the insights. Based on this finding and the theoretical and 
empirical evidence in favor of using multiple different active 
learning sampling methods to improve classification performance 
[2,4,7,12], we hypothesized that data scientists would also benefit 
from data exploration on smaller but better selected data samples 
generated from sampling techniques other than random sampling.  
To test our hypothesis we developed large-scale versions of popular 
sampling algorithms used in active learning [24] – density 
sampling, uncertainty sampling, and query by committee - and 
setup a study to investigate the quality of insights generated by data 
scientists as they explored data sampled using these algorithms. 
The results of our online study with 34 data scientists indicate that 
data scientists can produce insights of comparable quality with any 
of our sampling techniques, but that the content of the insights 
varies across the different techniques. This indicates that a data 
scientist may be able to make a broader range of insights about their 
data by using a range of sampling tools rather than their current 
practice of only relying on random sampling. We conclude that data 
scientists should use multiple sampling techniques separately or 
even in conjunction with each other to generate a broad range of 
insights about their datasets. 
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2. RELATED WORK
Given the reliance on data scientists to build Big Data models, 
understanding their processes for exploring and analyzing data and 
the ways in which we can improve those processes is paramount to 
the success of Big Data. In the next section we review the related 
work on Big Data related studies and sampling techniques from the 
Active Learning literature. 

2.1 Data Exploration Process 
Many studies have focused on the processes of data scientists as 
they attempt to attain, clean, understand, model, and visualize their 
data [8,9]. For example, Kandel et al. [9] define the general process 
followed by data scientists performing data analysis as follows: 
Discover: Tasks necessary to acquire a dataset; Wrangle: 
Preprocessing tasks executed to get the data into a desired format; 
Profile: Set of tasks that guarantee the quality of the data; Model: 
Tasks accomplished to obtain information from the dataset; and 
Report: Final set of results. Underlying many of these processes is 
the task of data exploration, often called exploratory data analysis. 
Performing data exploration refers to gaining an understanding of 
the dataset with the objective of generating hypotheses, testing 
assumptions, supporting the selection of statistical methods and 
providing a basis for further data collection [25]. Tasks commonly 
executed during data exploration include but are not limited to 
creating summary statistics, histograms or other visualizations, and 
determining the data distribution. Data exploration is an iterative 
and ongoing process [8], as new analyses lead to new data cleaning 
procedures which in turn lead to new assumptions to be checked 
and analyzed.  

However, data exploration and visualization of Big Data datasets is 
computationally challenging. A common way to deal with Big Data 
datasets for data exploration is to use feature selection to create 
two-dimensional plots. However, rendering a plot for millions of 
data points is still time consuming and sometimes impossible [10]. 
Similarly, any data transformation or computation of any kind of 
statistic becomes time consuming when the data points number in 
the millions [6,21]. To overcome this challenge, it is necessary to 
sample Big Data datasets and the use of multiple sampling 
techniques may be necessary to avoid bias in the data [9].  

2.2 Data Sampling 
An evaluation of common data science software and packages 
shows that random sampling is frequently the only supported 
sampling technique to use for the large-scale datasets ([15,19,20], 
[3] implements other techniques but not for large scale data). 
Drawing from active learning (e.g., [5,7,17,24]), which relies 
heavily on its ability to select the most informative data points, it is 
apparent that there are many different sampling algorithms that 
select data points with specific properties that can be used in 
classification related problems. Empirical and theoretical [2] results 
from the active learning community show that these basic querying 
strategies outperform passive learning using random sampling 
strategies [2,4,7,12] and are specially good at dealing with 
imbalanced datasets [7] and maintaining fast rates of error decay 
[2,4,7,12].  
Although there are many different variants of active learning 
sampling techniques, we are focused mainly on common 
techniques [24]: Query By Committee, Density and Uncertainty 
Sampling. Other sampling methods like stratified random sampling 
were discarded because they require prior knowledge of the strata 
of the dataset or the population and this may not be an option for 
data exploration when the dataset or the population are not well 
known. 

Query By Committee (QBC): The QBC approach involves 
maintaining a committee or set of classifiers that are all trained on 
a labeled dataset. Each classifier (or committee member) is then 
allowed to vote (predict the label) on the labels of input data points. 
The most informative data points are considered to be those about 
which the classifiers most disagree [24]. 
Uncertainty Sampling: This sampling technique [12] selects data 
points for which there is a low posterior probability 𝑃 𝑦 𝑥  (high 
uncertainty), where 𝑦 is the label assigned and x is the data point. 

Density Sampling: In this method, the feature space is divided into 
a grid and points are picked probabilistically, relative to the number 
of points in the grid cell. This technique usually does not select data 
points in low probability regions, resulting in a low number of 
selected outliers.  
We hypothesize that data scientists can create better insights from 
data sampled using different techniques (just as active learning 
algorithms can). 

2.3 Insights 
Data exploration, although an important process, is meaningless if 
it does not produce a tangible result that can be used for data 
modeling, or any other high level purpose. We refer to this main 
output from data exploration as an insight. In this article, we use 
the canonical definition of insight as found in the Merriam-Webster 
dictionary: The act or outcome of grasping the inward or hidden 
nature of things or of perceiving in an intuitive manner. Insights 
have mainly been used in the visualization community as a way to 
evaluate visualizations [18]. These evaluations are different from 
typical visualization benchmarks which are closed and specific to 
finding specific properties of a dataset and are usually biased 
towards a specific line of thought [18]; instead insight-based 
evaluations are open ended as they are designed to let the data 
scientist more organically discover whatever she can on the data 
without being biased by specific questions [18].  In this work we 
use insight-based evaluation as a way to evaluate the effectiveness 
of sampling techniques for data scientists to learn about a dataset. 
Other evaluations were considered like measuring the discovery 
rate of outliers or other types of observations. However, this kind 
of evaluation is not a good fit for data exploration because it is very 
constrained and specific to the task in hand, while data exploration 
is an open ended process. 

Given the lack of work examining the sampling techniques that Big 
Data data scientists use (if any), as well as their potential to affect 
data scientists’ insights, we first deployed a survey to understand 
current practice.  

3. SURVEY OF BIG DATA DATA SCIENTISTS
Kandel et al. note that the data scientists they interviewed were 
wary of using data sampling because of the bias it could introduce 
into their analysis [9].  Similarly, Lin et al. [13] state that sampling 
for Big Data is easy to get wrong, is contrary to the goal of Big 
Data, and is inaccurate to the point where they suggest to simply 
use as much data as possible and run experiments at scale.  

While we agree that using all available data is important when 
computing models, it is challenging for a data scientist to explore 
and understand very large sets of features and observations at once. 
With the goal of understanding the state of the practice used to 
perform data exploration on Big Data, we created an online survey 
illustrated in Figure 1. We announced our survey in multiple online 
locations that would attract individuals with some Big Data 
experience. The locations included Kaggle forums 
(https://www.kaggle.com/general/24584), Big Data and Data 
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science special interest groups on LinkedIn in topics like: Robotics, 
Computer vision, data science, Big Data, Machine Learning and 
email lists of students who had successfully taken a doctoral-level 
machine learning course at our institution. Study participants were 
given a $5 gift card to compensate for their time. To filter out 
participants who were not data scientists, we asked them to check 
whether their job could be described as the extraction of knowledge 
from large volumes of data in various forms using statistics, data 
mining or machine learning.  

Figure 1. Survey structure 

3.1 Demographics 
35 people completed our survey, of which 31 passed our screening 
question about their experience with Big Data. From these 31 
survey responses, 22 were valid while the rest were discarded due 
to bogus responses (participants that tried to get paid without 
actually properly answering the survey).  We report the findings 
from these 22 valid surveys. More than half (55%) of our 
participants had an age of 30-39, 30% were 20 – 29 years old and 
15% were 40 years or older. 75% of our participants were male. 
70% of our participants had an education level of Master’s degree 
or higher which is not surprising given our recruitment method. The 
remaining 30% was uniformly distributed between bachelors’ 
degrees, current master’s students and other. They worked at 
companies like Microsoft, Google, and IBM, and their data science 
experience was very diverse as shown in Figure 2. 

3.2 Responses 
We analyzed our survey responses focusing on understanding our 
respondents’ typical dataset and their process for exploring that 
data. 21 of the 22 respondents reported to have analyzed datasets 
with a million data points or bigger and 7 had analyzed 10 million 
data points or larger. More than half of our participants had worked 
with datasets with 1000 to 1 billion features. These responses show 
that the majority of our respondents have had some exposure to a 
large dataset. To understand their data exploration process, we 
asked two kinds of questions: multiple choice and open ended. We 
manually coded the open-ended text responses and identified the 
most prevalent themes. First, we note that all of our participants 
reported exploring their dataset before doing anything else.  
During their data exploration process, 63% of the participants 
answered that they use data sampling. Of these 63%, 50% use 
random sampling, 33% stratified sampling and 16% perform 
sampling by hand (i.e., manually selecting data points by looking 
through the data). Of the participants that used sampling, we then 
assessed their responses about the quality and bias that their 
sampling might introduce. Most respondents decided what the size 

of the sample should be without the guidance of measures like 
variance of the dataset. Participants did not evaluate their samples 
for quality. We note that the quality of a sample can be shown by 
generating many samples of the same size, and then plotting all of 
them to check if they give a consistent distribution.  

Finally, the survey asked participants about their perceived utility 
of other sampling techniques. 65% of our participants believed that 
using multiple sampling techniques could improve the quality of 
their insights and 71% thought it would decrease the time spent on 
data exploration. 

Figure 2. Data science demographics of survey respondents. Top: 
Years of experience, Bottom: Data science relevant skills 

3.3 Conclusions 
We found that a majority of our surveyed data scientists use data 
sampling, though mostly random sampling, stratified sampling and 
sampling by hand. There are a variety of reasons that could explain 
these results including lack of tools available in common data 
science toolkits or knowledge about the existence of different 
sampling techniques. Additionally, statistics classes typically only 
cover random sampling for data exploration. Other sampling 
techniques are introduced for active learning, but it may not be 
apparent that those techniques could be used within data 
exploration. However, our data scientists did agree that other 
sampling algorithms may help them more efficiently generate 
insights as well as improve the quality of their insights. In order to 
evaluate whether their (and our) hypothesis is true, we now present 
our study to compare the insights generated using different data 
sampling algorithms on the same large dataset.  

4. DATA SAMPLING INSIGHTS STUDY
While random sampling selects individual data points through an 
unbiased selection, the final sample may not be a representative 
subset of the data. For example, from a random sample it is hard 
for a data scientist to determine which data points are common and 
which are anomalous. Random sampling may fail to select 
anomalous points that the data scientist would prefer to evaluate. 
Given that common tasks for data exploration include finding 
natural clusters of data as well as anomalies, it is possible that using 
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alternative sampling techniques that bias their selection in 
predefined ways would help practitioners focus their efforts on the 
types of points they are interested in. In order to understand this 
tradeoff in practice, we setup an online study in which data 
scientists (our participants) were assigned to a data sample 
generated by one of four different sampling techniques. Then we 
asked our participants to understand the data sample and write 
insights that could help them build a classifier. Next we describe 
the details of the study.  

4.1 Study Design 
Our main hypothesis was that sampling techniques with different 
selection biases would generate insights with a quality on par with 
random sampling but focused on different aspects of the data. We 
chose a between-subjects study design, with one of four sampling 
techniques in each condition: uncertainty, density, query by 
committee, and random. Random sampling represents our control 
condition based on our finding that this is what data scientists use 
under normal circumstances. In order to ensure that participants 
generate high-quality insights, as defined by Chis North [18], we 
used an open-ended study protocol that allows the participants of a 
study to explore the dataset, as opposed to a study or benchmark in 
which tasks and steps are predefined and focus only on specific 
aspects of a data analysis process like finding outliers.  Our main 
analysis measures insight content and quality of the insights 
produced in each condition.   

The participants’ task was to explore the features of a provided 
dataset containing the editing habits of Humans and AI Bots on 
Wikipedia, using basic interactive visualizations, such as 
scatterplots and histograms that we provided. As they explored the 
data, they were asked to create insights that they might use to build 
a Bot detector for finding unregistered Bots. Specifically, we told 
them: “try to understand the dataset to a level where you could build 
a bot detector. We want you to formalize this understanding in the 
form of notes that we will call insights”. We collected all of their 
insights as well as all of their interactions with our visualizations. 

4.2 Participants 
We recruited participants using the same online forums as before: 
Kaggle, Big Data and Data science special interest groups on 
LinkedIn in topics like: Robotics, Computer vision, data science, 
Big Data, Machine Learning, and institutional email lists. To 
participate in our study, participants had to be 18-80 years of age, 
must have studied machine learning or data science for 1 or more 
semesters at the University level and/or worked in Data Science or 
Machine Learning for the last 6 months. We compensated 
participants with a $20 gift card for their time. 

4.3 Materials 
The data samples used in the study were generated using four 
different sampling techniques as described in the related work: 
random, density, uncertainty and query by committee. This entire 
dataset, samples and code to generate the samples are available 
online at https://github.com/ubicomp-lab/big-data-sampling.  
Table 1. Features computed from the Wikipedia editing log data set 

Features Most 
important 
to detect 

Relevancy Number 

Per-user mean of inserts Humans High 0 

Per-user mean of deletes Neutral High 1 

Per-user mean of changes Bot High 2 

Per-user std dev of inserts Not sure High 3 

Per-user std dev of deletes Not sure High 4 

Per-user std dev of changes Not sure High 5 

Per-user-per-page mean of inserts Humans Medium 6 

Per-user-per-page mean of deletes Neutral High 7 

Per-user-per-page mean of changes Bots Medium 8 

Per-user-per-page std dev of inserts Not sure Low 9 

Per-user-per-page std dev of deletes Not sure Low 10 

Per-user-per-page std dev of changes Not sure Low 11 

Per-user largest single add Humans/Bots Medium 12 

Per-user largest single delete Humans/Bots Medium 13 

Per-user largest single change Humans/Bots Medium 14 

Per-user most frequent hour edited Humans/Bots Medium 15 

Per-user std dev of most frequent hour edited Bots Medium 16 

Per-user total edits Bots Medium 17 

Per-user total unique pages edited Bots Medium 18 

Per-user avg total edits per page Bots Medium 19 

Per-user std dev total edits per page Not sure Low 20 

Per-user avg minor revisions Bots Medium 21 

Per-user std dev minor revisions Neutral High 22 

Per-user avg time between edits Humans/Bots Medium 23 

Per-user std dev time between edits Humans/Bots High 24 

Per-user mean time edit from last rev Not sure High 25 

Per-user std time edit from last rev Not sure High 26 

The data that we sampled from is a Wikipedia editing-log dataset 
for 2.22 million different users. For each user there are 27 different 
feature values that summarize editing behaviors during the user’s 
total time editing on Wikipedia (as of May 2014). The features were 
chosen based on prior work [1] and are listed in Table 1. The users 
in the dataset are either Bots or Humans. Bots are meant to fix 
grammar or punctuation errors, find and revert malicious changes, 
and other maintenance tasks, while Human users contribute the 
bulk of the content of a Wikipedia article. Although Bots are 
required to register with Wikipedia (at the time of the study and in 
our dataset there were 500 Bots registered), there may be others that 
are editing the website without registering. This means that users 
that we would think are Human users may actually be Bots. The 
different samples generated contain all of the 500 registered Bots 
plus a sample generated from the remaining dataset. This was done 
to guarantee that our participants had the highest possible number 
of examples of Bots and to follow closely a real-world task of 
creating a bots classifier with a small labeled dataset. In total the 4 
different samples (including the 500 bots) had data sizes of: 6015 
users for random, 5948 for density, 6099 for uncertainty and 5542 
for query by committee. The different sizes are due to the 
randomness inherent to each of the sampling techniques. Each 
sample is about 0.26% of the original dataset. All participants in the 
same study condition received the same sample of the data. 

4.4 Online Data Exploration User Interface 
To run our online study, we developed and hosted a study website 
on our own server. Our website did not record any personal 
information that could identify any of our participants like name or 
IP address with the exception of email address, which we used to 
send the gift card for participating in the study. However, we 
recorded the location of the mouse pointer every minute during the 
study to help identify participants that did not complete the study 
appropriately (e.g., did not use the visualization support to generate 
insights). Our website was composed of the following webpages: 
Consent, demographics survey, education, quiz (Figure 4), task 
explanation, navigation help (Figure 5 left), visualizations (Figure 
3. Left: Visualizations webpage screenshot, Right: Insights input 
screen left) and insight writing (Figure 5 right).  
The webpage containing the visualizations of the sampled data is 
shown in Figure 3. In this webpage, the participant selects two 
features (from the 27 available) to display. The feature value 
distributions for Bots and Humans is shown in separate histograms 
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as shown in Figure 3. Under these histograms, it was displayed a 
scatter plot of the two features selected. There are a total of 351 
possible combinations of pairs of features that our participants 
could look at. To help them decide which pairs of features to focus 
on, we provided the top 10 scatter correlation plots for different 
pairs of features that had the closest value to 0, -1 and +1. All of 
the visualizations were created using plotly.js [22].  

 
Figure 3. Left: Visualizations webpage screenshot, Right: Insights 
input screen 

On the insight submission page shown in Figure 3 (right), in 
addition to writing and submitting insights, the participants were 
required to select what the insight was about (outliers, features, 
general, other), indicate her confidence in the insight, specify the 
hypothesis associated with the insight (if applicable) and specify 
whether the insight was expected or unexpected (participants were 
told that an expected insight is one the participant was looking for, 
and an unexpected insight is one the participant observed without 
explicitly looking for it). We collected this information to better 
characterize the generated insights, as described in [23].  

 
Figure 4. Uncertainty sampling quiz, participants were shown a 
visualization of a dataset and then asked which of the data points will 
be more likely to be selected by the sampling method. 

Participants could also click on a help button on the top right corner 
of the website as shown in Figure 5 (left), which displays the 
description of the task and features, a screenshot of the visualization 
webpage with usage hints (Figure 5) and a depiction of the 
sampling technique used to generate the sample 

4.5 Study Protocol 
Figure 5 (right) outlines the study structure. After consenting to 
participate in the study, participants were assigned at random to one 
of the 4 conditions. Next they responded to a demographics survey, 
followed by an explanation of the sampling condition they were 
assigned to. To check the participant’s understanding of their 
assigned sampling technique, the following screen contained a one-
question quiz. Participants had two attempts to answer correctly, 
and were removed from the study if they failed both. Participants 
who passed were briefed on the exploratory data analysis task they 
would be working on, as well as a description of the Wikipedia 
dataset. Participants were then given the task instructions to explore 
the data and make insights that would be useful for making a Bot 
detector. Finally, participants were shown how to use the different 
visualizations available and how to record insights in the platform 
as shown in Figure 5 (left). Participants had up to 1.5 hours to 
complete the study, after which the website closed automatically. 
To be eligible for payment, participants were required to enter at 
least 4 insights. After 30 minutes, a button appeared on the screen 
allowing participants to submit their insights and finish the study.  

5. DATA ANALYSIS AND RESULTS 
To understand the differences in the insights produced with each 
sampling technique, we measured insight quality and content. We 
describe our method for preprocessing our insights, assessing 
quality and content, and our analysis results. 
Table 2. Participants and insights per condition  

Total number 
of participants Total number of insights Condition 

10 43 Random 

9 41 Density 

9 44 Uncertainty 

6 29 Query by committee 

 

5.1 Preprocessing 
We used several measures to avoid participants from cheating. 
First, participants had to take a quiz to assess that they understood 
how the data sampling technique worked. If they failed the quiz 
twice, we stored a cookie on their computer to impede them from 
using the same computer to re-take the study. Our second measure 
was to constrain navigation in the website by forcing them to move 
step-by-step through the study. Without this measure, participants 
could skip the quiz simply by looking at the html code and 
redirecting to the next page. We also checked the insights for valid 
responses. Some participants wrote only unintelligible insights, 
wrote the same insight with slight variations multiple times, or 
wrote insights without interacting with the visualizations, which 
was revealed through the mouse movement logs recorded by our 
website. After using the above measures, from a total of 40 
participants we discarded 6 users from our final dataset. From the 
34 remaining participants, we filtered out unreadable insights, 
which contained unparseable text and duplicate insights. From a 
total of 174 insights, only 17 were excluded leaving a total of 157 
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insights. Table 2 shows a summary of the quantity of insights and 
participants across conditions. 

5.2 Insights content analysis 
The content analysis is divided into two parts: self-evaluation and 
feature differences. In the self-evaluation, we summarized and 
compared the responses to the supplementary questions that 
participants provided when they wrote each insight (kind of insight, 
confidence, etc.) as described in section 4.4. In the feature 
evaluation, we coded each insight by the data features that were 
mentioned explicitly or implicitly. We compare the distribution of 
features mentioned between the conditions (normalized by the 
number of insights per condition). Additionally, we applied a tf-idf 
transformation [11] to obtain a measure of importance of the 
features mentioned in each condition as shown in Figure 6 (Top). 
Table 3. Participants selected categories for each of their insights.  

Condition Features Outliers General 
Random 63% 18% 19% 

Density 73% 12% 14% 

Uncertainty 48% 37% 16% 

Query by 
committee 80% 10% 10% 

 Finally, to understand the differences across conditions we identify 
the idiosyncratic features as defined by Zhao et al. [27], by 
measuring the Euclidean distance of the features per condition to 
the average feature weights across all conditions.  This distance 
then is used to rank the features for each condition. This approach 
allows us to understand which feature weights help differentiate 
each condition. 

5.2.1 Results 
We first compared the participants’ responses to the self-evaluation 
questions. In general, we can see that the participants’ self-reported 
answers about their insights were different for each condition 
(Table 3). When selecting whether they were confident in their 
insights, participants in the Density condition were more confident 
than in any other condition by a large margin: 90%, compared to 
65% for random, 63% for uncertainty and 51% for QBC. 
Participants also had differences in their ability to generate a 
hypothesis about their data. Participants in the QBC condition did 
not have a hypothesis 86% of the time compared to 65% for 

uncertainty, 46% for density and 44% for random. Finally, 
participants focused on different categories of insights (Table 3).  
In particular, participants in the uncertainty sampling condition 
made a large number of insights about outliers compared to the 
other conditions, which is unsurprising given the bias in the sample 
towards outliers.  

For the second part of the content analysis, we compared the 
features that were mentioned in the insights to determine whether 
participants were focusing on similar or different parts of the 
dataset. Figure 6 (top) shows the relative importance of insights that 
contain each feature in the dataset. The values in the horizontal axis 
correspond to the feature number as shown in Table 1. Each 
condition’s top 3 features are shown in Table 4. We compared each 
pair of conditions using the Spearman’s rank correlation coefficient 
to determine if they had similar importance. 

 
Figure 6. Top: Insights-Feature importance across the different 
conditions after normalizing and applying the tf-idf transform, dark 
blue indicates least important and dark red indicates very important. 
Bottom: Difference of insights-feature importance from the mean 
calculated across all conditions: highlights those features that are 
above or below the mean. Dark blue indicates lower than average 
importance, dark red indicates higher than average importance. 
Table 4. Top 3 most representative features for each condition. The 
(-) sign indicates whether that feature has lower than average 
importance or (+) higher 

Condition 1st 2nd 3rd 
Density (23) Per-user avg 

time between edits 
(+) 

(24) Per-user std dev 
time between edits    
(+) 

(6) Per-user-per-
page mean of 
inserts (-) 

Query-by-
committee 

(18) Per-user total 
unique pages 
edited (-) 

(20) Per-user std dev 
total edits per page    
(+) 

(24) Per-user std 
dev time between 
edits (-) 

 
Figure 5. Left: Help webpage where is shown to the participant how to interact with the visualization website, Right: Structure of the study 
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Random (15) Per-user most 
frequent hour 
edited (-) 

(23) Per-user avg time 
between edits (-) 

(1) Per-user mean 
of deletes (+) 

Uncertainty (15) Per-user most 
frequent hour 
edited (+) 

(21) Per-user avg 
minor revisions       (+) 

(24) Per-user std 
dev time between 
edits (-) 

 No correlations were found (Table 5), indicating that participants 
using each sampling algorithm focused on different features in the 
dataset.  

The differences in features are also apparent upon inspection of 
Figure 6 bottom. For example, the importance of features in the 
Density condition for features 5,6 and 8 is lower than average, 
while the importance of these features for QBC for these features 
is higher than average. We observed the similar pattern for random 
and uncertainty for features 13-15. This finding indicates that by 
using two or more techniques in conjunction during data 
exploration, data scientists could potentially focus on more of the 
features rather than a small subset of them. 
Table 5. Spearman's rank correlation for each pair of conditions 

Condition Condition Correlation p-value 
Density Query-by-

Committee 
0.05 0.77 

Density Random -0.008 0.964 

Density Uncertainty 0.21 0.28 

Query-by-
Committee 

Random 0.08 0.65 

Query-by-
committee 

Uncertainty -0.11 0.57 

Random Uncertainty -0.04 0.8 

 

5.3 Insights quality analysis 
Given that the content of the insights appears to be different for 
each sampling technique, we then focused our analysis on whether 
the quality of the insights was reduced with the different samples. 
Two human raters assessed each insight for three quality metrics: 
Complexity, Depth and Relevancy. The average of each quality 
metric was calculated for each insight, and statistical tests were 
used to compare the values across conditions. We used the 
following rubric to rate each insight for each of the three quality 
measures and provide example insights from the study. This rubric 
is based on Saraiya et al. [23] characterization of insights . 

Complexity: Number of features used (explicit and implicit). 
Low complexity: Two or fewer features  

“Bots tend to spend less average time between posts compared to the total 
changes made by the user” 

Medium Complexity: Three to four features 

“Bots make less but larger deletes per page. Humans make more but smaller 
deletes, Bots make single deletes per page, humans make more deletes per page" 

High Complexity: More than four features 

“For majority of the features like number of edits, inserts, deletes have much 
lesser values for bots than that of humans. This is expected as humans are prone 
to error and changing their minds but bots are not." 

Depth: An insight is deeper if it builds on previous insights [23]. 
Low depth: Usually this kind of insight does not have a hypothesis associated with it, 
and is mainly descriptive without any conclusion or hypothesis. 

“An abnormally high number of bots average use at 4 am in the morning” 

Medium depth: Great detail but poor hypothesis or poor detail with great hypothesis. 

“I found the graph Per-user Per-Page Mean Of Inserts vs Per-user Largest-
Single-Add splits human and bots well. The bots tend to add things randomly 
large but in few times. While human tend to have more times to think so they 
have larger mean of inserts.” 

High depth: This kind of insight is very detailed and has a closing hypothesis. 

"This is a clear difference we have with bots: Working hours. In this graph (most 
freq. hour of inserts vs most freq hour edited), we see that human data peak at 
9PM, whereas bots seem to have a more uniform distribution. We sleep during 
12-8AM and work from 9AM-5PM typically, so around 8-9 PM is a natural time 
to do most edits for humans! For bots, they don't have sleeping habits that I 
know of, or 9-5 work hours, so it's more uniform for them. Hypothesis, Bots don't 
sleep or go to work 9-5, and hence the uniform distribution for their changes / 
edits frequency throughout the day." 

Relevancy: Relevancy is a quantitative measure of insight quality 
in which we compare the features mentioned in each insight to the 
pre-computed importance of each feature to a Bot/Human detector 
classifier. The relevancy of each feature can be seen in Table 1, and 
they were determined as follows: High relevancy features are those 
that are mentioned in the literature as being useful at detecting bots 
vs. humans, Medium are features we determined to be useful, and 
low importance features were not found in the literature and do not 
appear to be useful to the task.  

Two members of the research team independently rated every 
insight. To address rating disagreements, a scores difference was 
calculated and then used to rank the conflicts. The scores with 
highest difference were discussed until reaching agreement and 
until a high Cohen’s-Kappa for all the factors was achieved: 
Complexity k=0.84, Depth k=0.91, Relevancy k=0.91. After rating 
every insight for the 3 quality measures, we transform the quality 
measures to numerical values: High = 3, Medium=2 and Low =1. 
We then calculate the mean to produce a quality score for each 
insight. 

5.3.1 Results 
In order to compare the quality of the insights generated between 
conditions, we used the Kruskal-Wallis H test, since this test does 
not assume normality of the data. 

 
Figure 7. Insights Quality distribution for all the conditions 

There was no significant difference in the quality of the insights for 
the four conditions (H=2.86, p=0.41). This can be confirmed 
visually as shown in Figure 7. It is worth mentioning, however, that 
these results are based on a small sample size that is within the 
limits of use of the Kruskal-Wallis test [16].  

Density has the highest median value (1.9), followed by uncertainty 
(1.8), random (1.6) and QBC (1.5). However, not surprisingly, 
there was high variance in the quality scores.  

Kruskal-Wallis H tests were also computed for each quality factors 
separately across conditions (Figure 8) but there was not a 
significant difference: Complexity (statistic=2.43, p=0.48), Depth 
(statistic=1.4, p=0.70) and Relevancy (statistic=7.7, p=0.051), 
which was marginally significant. In general, although we cannot 
state that the quality of the insights across conditions is the same, 

32



the box plots show that they are of comparable in overall quality 
and for the individual quality factors. We conclude that while the 
content of the samples was different between the sampling 
conditions, the quality of the insights across different conditions 
was not significantly different. 

 
Figure 8. Insights quality measurements distribution across 
conditions  

6. DISCUSSION 
Our analysis of insights quality revealed that all of the conditions 
have comparable levels of quality including the individual quality 
measures of Depth, Relevancy and Complexity. Independent of the 
condition, the quality of the insights is not significantly affected 
positively or negatively by using density, QBC or uncertainty 
sampling compared to random sampling. It is interesting that even 
techniques like uncertainty and QBC that are purposefully selecting 
data points that lie in conflicting regions of the data do not hinder 
data scientists from producing quality insights on par with random 
sampling. The characteristics of individual sampling techniques 
can be seen in the content analysis results. For example, 
participants using density sampling felt much more confident about 
their insights than in any other condition by a large margin. We 
attribute this to the natural tendency of density sampling to filter 
out outliers and pick data samples from high-density regions in the 
dataset. The consequence of this is that users may have felt like the 
data was more homogenous than it actually is as the sampling 
approach concealed the more extreme values. Despite this, the 
quality of the insights was not affected and although not 
significantly different, density has the highest median depth and 

relevancy scores, which in both cases are higher than 2 (the medium 
value). Relevancy in this case is especially important because it is 
an indirect measure of correctness of the insight, meaning that the 
features described in the insights by participants in the density 
condition were recognized in the literature as being useful for 
detecting bots and humans. This is a meaningful result given the 
context of our study: Our participants were from a diverse 
background in skills and work experience, and yet they were able 
to pinpoint the most important features for the task in a very limited 
amount of time and with no previous experience with this specific 
dataset.  

We also found that density sampling produces insights with a very 
low importance for per-page related features (features 6 to 11). 
These features are particularly interesting because they break down 
inserts, deletes and changes for each Wikipedia article highlighting 
more specific behaviors. This further shows that density sampling 
helps data scientists focus on general trends and even features that 
better describe those trends. 

QBC sampling produced insights with higher than average 
importance for features 5 to 8 and 10. Most of these features are 
“per user per page” based features. This is a very interesting finding 
that shows how density sampling and QBC could be 
complementary: density sampling highlights population trends 
while QBC highlights more specific trends. 

Uncertainty sampling produced insights with higher than average 
importance for features 13-15, 17, 18, 21; these are all features 
focused on outliers since uncertainty sampling does sample from 
regions where the certainty of the classifier is low. This is further 
supported by the participants’ answers to the question: What is your 
insight about? Participants answered 37% of the time that their 
insight was about outliers (with the next highest condition being at 
20%). Uncertainty sampling is complementary to random 
sampling, i.e. random sampling had lower importance values for 
features 13-15, 17 and 21.  

In general as shown in Figure 6, the different sampling techniques 
have different importance weights for each of the features in the 
data set and some of them are complementary to each other. Our 
study validates that different sampling techniques can generate 
insights that help to focus a data scientist on different aspects of a 
dataset, without loss of quality, when compared to the most 
commonly used sampling technique, random sampling. 

6.1 Limitations 
As a remark about our study design and survey, one of the biggest 
challenges was finding participants. Although there was a monetary 
compensation, the motivation for the participants to participate was 
very low. Despite reaching out to online groups with thousands of 
members, talking to students taking advanced machine learning 
courses and reaching alumni from related programs, we had a very 
low turnout. From study pilots we received feedback from the 
participants stating the payment was low when compared with the 
time spent and the effort required. As an example, professional data 
scientists are paid an average of $US60 per hour in the U.S. 
Graduate students, although paid much less have very limited time, 
which conflicted with our 1.5 hour long study. We hope that with 
these results we encourage the voluntary participation of data 
scientists in this kind of study, as their input is very valuable and 
necessary for creating and understanding new methods for 
exploratory data analysis of Big Data. We also found that QBC had 
the highest number of participants removed due to cheating and 
unintelligible insights. Despite conditions in the experiment being 
exactly the same, this cheating behavior cannot be attributed to the 
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sampling technique alone and a follow up study with an interview 
maybe required to find out the reason. 

7. CONCLUSION AND FUTURE WORK
As our results show, not only do multiple sampling techniques 
produce insights with a quality comparable to insights produced 
with current practices (random sampling) but also they help data 
scientists focus on specific aspects of a dataset. These results follow 
the theoretical properties of the different sampling techniques. For 
example, density sampling filters out outliers and helps focusing on 
general trends, QBC looks at data points that lie at the boundary of 
two classes, hence helping to focus on features that do not capture 
general trends, while uncertainty focuses on outliers and features 
that highlight them. We also found that these sampling techniques 
are complementary and should be used together. For example, 
density and QBC sampling together could produce richer insights 
than either one alone; similarly, random sampling and uncertainty 
sampling are complementary to each other.  

More generally, our results support claims in the literature [5,16,19] 
for using multiple models and sampling strategies in data science. 
In addition to our own results, we argue for using not just one but 
all of the sampling algorithms to generate a richer understanding of 
the dataset. In our future work, we will test the hypothesis that data 
scientists could generate insights with higher quality and richer 
contents than with any individual sampling technique alone. For 
future work, an aspect of the results that deserves more 
investigation is the estimation of possible biases caused by the goal 
task. In this study we used classification as the goal task, and 
although we believe our results generalize to other goals tasks there 
might be aspects of other goals tasks that are sensitive to the 
different sampling methods used. 
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