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Abstract

While recent advances in computer vision have caused
object recognition rates to spike, there is still much
room for improvement. In this paper, we develop an
algorithm to improve object recognition by integrat-
ing human-generated contextual information with vi-
sion algorithms. Specifically, we examine how interac-
tive systems such as robots can utilize two types of con-
text information–verbal descriptions of an environment
and human-labeled datasets. We propose a re-ranking
schema, MultiRank, for object recognition that can ef-
ficiently combine such information with the computer
vision results. In our experiments, we achieve up to
9.4% and 16.6% accuracy improvements using the ora-
cle and the detected bounding boxes, respectively, over
the vision-only recognizers. We conclude that our al-
gorithm has the ability to make a significant impact on
object recognition in robotics and beyond.

1 Introduction

The growth of social media and crowdsourcing platforms
has opened access to compound descriptions for images in
addition to simple labels, e.g., textual descriptions associ-
ated with an image posted on social media may contain con-
textual information beyond the labels of image regions. An
ability to digest this type of context-rich information in a
perception system can be extremely useful in problem do-
mains such as disaster response where humanitarian volun-
teers assess damages by looking through a plethora of im-
ages of an affected area and textual descriptions from social
media (Hörler 2014). In addition, robots interacting with hu-
mans via natural language would also need such an ability
to integrate what has been seen and what has been told. In
this context, our research broadly addresses a problem of
fusing information available in various modalities including
vision and language to provide enhanced overall perception.
Toward this general goal, this paper is specifically focused
on fusing information from three types of sources–i.e., com-
puter vision, textual descriptions and Web data mining–for
the object recognition problem.

For example, consider a robot that can recognize certain
objects using a computer vision system, albeit with an im-
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perfect accuracy. Suppose that a human issues a command
to the robot “Pick up the cup on the dishwasher.” In order
to perform the given command, the robot needs to recog-
nize those objects mentioned in the command, namely cup
and dishwasher, in its environment. Here, we investigate
how to improve the recognition performance after receiv-
ing the command, by utilizing the information embedded in
the command itself, e.g., a spatial relation between the two
objects. We also take advantage of additional information
mined from the Web, where extra human labeling is not re-
quired during run time. For example, from user-tagged im-
ages on the Web, we can learn that certain objects tend to
co-occur frequently, e.g., dishwasher and stove.

For the learning and the interpretation of spatial relations,
we use an approach described in (Boularias et al. 2015) that
has been extensively evaluated on ground robots for seman-
tic navigation in unknown outdoor environments (Oh et al.
2015; 2016); the details are omitted here due to space lim-
itation. The main focus of this paper is on efficiently inte-
grating several types of information for better overall per-
ception, reporting how much improvement can be achieved
specifically on the object recognition task.

We take a probabilistic approach to fuse such informa-
tion. We introduce MultiRank, an information fusion algo-
rithm that uses the label probabilities for bounding boxes
obtained from computer vision (CV) as priors and computes
posteriors based on object co-occurrence statistics and ver-
bal descriptions. We create a multi-layered graph from the
bounding boxes to represent general co-occurrence relation-
ships between labels and also spatial relations specific to
each image. We then use a Random Walk algorithm (Hsu,
Kennedy, and Chang 2007) to solve for the object label for
each bounding box. We show that our algorithm increases
the accuracy of the vision-only algorithm by 9.41% and
16.67% in the oracle (ground-truth) and detected (Lin, Fi-
dler, and Urtasun 2013) bounding box cases, respectively,
on the NYU Depth V2 datasets (Silberman et al. 2012). For
the objects that are mentioned in commands (that are thus
more relevant to the task), further improvement is observed;
the accuracy improves by 15.24% and 17.46% in the oracle
and detected bounding box cases, respectively. We conclude
that our vision-language fusion approach for incorporating
contextual information from humans significantly improves
the performance of object recognition over the vision-only
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algorithms. While our experiments are carried out on an in-
door image dataset, our approach could easily be applied to
more practical applications such as aforementioned disaster
scenarios.

In the rest of this paper, after reviewing related works,
we describe our approach for leveraging verbal descriptions
in Section 3 and human-labeled datasets in Section 4. We
present our MultiRank algorithm for fusing this information
along with computer vision results in Section 5 and we re-
port the experimental results in Section 6.

2 Related Work

The last decade has seen steep progress in computer vision
based object detection due to deep learning algorithms. The
mean average precision is reaching 70% on PASCAL data
sets (Ren et al. 2015). While this is a significant improve-
ment from previous state-of-the-art approaches such as De-
formable Part Model (Felzenszwalb et al. 2010) whose re-
sults were below 50%, further improvement is anticipated
especially when object recognition is used to produce ac-
tionable results. For instance, a recognition system with 0.7
precision and 0.6 recall may mean a failure rate of 0.58 at a
task performance level accounting for 40% miss and another
30% false positive errors (0.4 + 0.6 ∗ 0.3 = 0.58).

Human-in-the-loop approaches in perception are not
new (Pavlick and Callison-Burch 2015; Sarma et al. 2015;
Salisbury, Stein, and Ramchurn 2015), as human perception
excels at solving complex problems such as recognizing ob-
jects in the blurred images (Deng, Krause, and Fei-Fei 2013)
and classifying celestial bodies (Kamar, Hacker, and Horvitz
2012). Despite the benefits of human-in-the-loop methods,
it is less intuitive to ask humans to label objects directly in
the applications (Russakovsky, Li, and Fei-Fei 2015). Using
natural language is a more intuitive way for humans to com-
municate with a system, e.g., describing an environment in
a written or verbal format (Siddiquie and Gupta 2010) or
commanding a robot to perform a task (Kong et al. 2014).

In the computer vision community, recent works indicate
that contextual cues, e.g., auxiliary information about the
scene (Aboutalib 2010; Divvala et al. 2009), can help im-
prove recognition results when the local pixel information
is not reliable. Existing approaches utilize co-occurrence of
objects in the training data set (Oliva and Torralba 2007;
Lawson, Hiatt, and Trafton 2014) and spatial relations be-
tween those objects (Divvala et al. 2009; Choi et al. 2010).

In (Choi et al. 2010), co-occurrence and spatial priors
are jointly learned in their context model to improve object
recognition. Furthermore, (Mottaghi et al. 2014) made use
of both global and local spatial relations, which improves
on PASCAL dataset from 26.6% to 30.8% using 33 static
context variables. The contextual features used in these ap-
proaches are extracted from images directly. Instead, we fo-
cus on human-generated information that can be mined from
the Web offline or that can be acquired via interacting with
people in a shared environment (Kaiser et al. 2014). The idea
of incorporating additional modalities to improve perception
has been recently studied in a simple game setting (Thoma-
son et al. 2016) where they demonstrated the improvement

Figure 1: An example scene with verbal descriptions.

in F1-score up to .354 from their vision-only system’s score
of .196.

Our approach for fusing contextual information is related
to graph-based ranking algorithms such as PageRank (Page
et al. 1999) and Random Walks (Ipsen and Kirkland 2005;
Hsu, Kennedy, and Chang 2007), which have been proposed
as a re-ranking schema given some first-pass ranking re-
sults (i.e., the output of a computer vision algorithm). The
Random Walk algorithm fuses contextual knowledge into a
graph structure, and then re-ranks scores based on both the
first-pass results and the context. Layered graphs similar to
ours have been successfully used in speech-related applica-
tions (Lee et al. 2014; Chen, Wang, and Rudnicky 2015). In
this technique, each modality’s recognition scores are mod-
eled as nodes in one layer of the graph. The nodes are con-
nected between the layers, and scores propagate across the
layers for re-ranking. This schema is an efficient way to
jointly model multiple types of heterogeneous information.
In (Chen and Metze 2013), an intermediate layer is added
between two layers of different modal information, and the
scores of one layer are updated from another layer through
projection from (and to) this centric layer. In these prior
works, the graph edges reinforce strong nodes by increasing
the strength of neighbors both within and between layers. By
contrast, in our proposed graph designed for object recogni-
tion, nodes within a layer compete for strength based on the
constraint that there exists only one correct label per object,
at the same time reinforcing the nodes in other layers that
are strongly linked.

3 Leveraging Verbal Descriptions

When compared to algorithms today, humans exhibit supe-
rior perception skills. Effortlessly, people can instantly seg-
ment a complex scene into a set of disconnected objects,
recognize familiar objects, and classify newly seen objects
into known categories. To benefit from human inputs, the
systems must be able to parse and understand people’s de-
scriptions of objects in the environment. We note that speech
recognition and natural language parsing are outside the
scope of this paper. Instead, we use a structured language
for describing spatial relations to focus on how the seman-
tic meanings of a verbal description can be interpreted and
understood by our system. The relations used in our experi-
ments are: left, right, above, below, and on. We use the cam-
era location as the default frame of origin, if not specified,
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when reasoning about a spatial relation.
We use the following simple grammar for describing a bi-

nary spatial relation:
<relation> (<subject>, <object>)

in which the subject has the particular relation to the refer-
ence object of the description. For instance, the verbal de-
scriptions in Figure 1 can be written as:

right(cabinet, picture)
above(cabinet, dishwasher).

4 Mining Human-Labeled Datasets

In addition to human descriptions of the environment, we ex-
plore online data sources that could provide common sense
information such as objects that commonly exist in certain
environments, e.g., a dishwasher and a stove are found com-
monly in a kitchen environment. In this work, we specifi-
cally look for image databases that can provide object labels.

Most of online image databases, such as Shutterstock or
Flickr, store tag information of labels per image, i.e., an
image is associated with a set of object labels relevant to
that image without further notion of object-level segmenta-
tion. We, therefore, focus on the co-occurrences of object
labels in these tag lists to model the conditional likelihood
of two objects occurring in the same scene; for instance, the
probability of seeing a dishwasher should be increased if a
stove has been seen nearby. We carefully evaluated several
publicly-available image databases to find “well-labeled”
images and used the same labels as in our vison-only al-
gorithms. For each label in the label set, we download the
top 500 ranked images and their tag label lists. For each la-
bel list, we look for pairs of labels that are in our label set
and record them in a co-occurrence matrix. Following the
same format used for verbal description, the co-occurrence
information can be represented as a special relation between
a pair of objects, for example,

co-occur (dishwasher, stove).

5 MultiRank Algorithm

We introduce MultiRank–a graph-based algorithm for fus-
ing information. MultiRank takes as input a pre-trained CV
algorithm, the image to be recognized, and parameters α, β
to determine how much to trust the initial CV results versus
the auxiliary non-visual context. We first run the CV algo-
rithm on the input image to produce a set of bounding boxes
around objects and the probabilities F (0) of each label N for
each object. We then collect human inputs in a verbal form,
e.g., dialogs, online data, etc. Given this information, we
construct the multi-layer1 graph structure leveraging spatial
relations and object co-occurrence statistics. By iteratively
running Random Walk over the MultiRank graph, we com-
pute re-ranked labels F (t) for each bounding box. These la-
bels leverage both the existing CV algorithm and additional
contextual information.

1Since a layer here represents a bounding box, we use ‘box-
graph’ and ’layer’ interchangeably in this paper.

Figure 2: Illustration of an image and the bounding boxes in
the corresponding MultiRank graph.

5.1 Constructing MultiRank Graph

MultiRank creates a graph that is organized as multiple
smaller graphs called boxgraphs as shown in Figure 2. Each
boxgraph represents one bounding box (one object) that was
returned by the CV algorithm. The nodes within a box-
graph represent the candidate labels for that box and are
assigned initial label probabilities F (0) from the CV algo-
rithm. Each boxgraph can include all candidate labels or
fewer select labels that have the highest probability as de-
picted in Figure 2. The nodes within a boxgraph are com-
pletely connected through within-boxgraph edges. After cre-
ating the boxgraphs, between-boxgraph edges are added to
connect the nodes between every pair of boxgraphs, result-
ing in a fully connected overall graph. All edges are ini-
tially assigned weight 0 but will be assigned a weight based
on human-generated context information. Formally, a Multi-
Rank graph G = 〈�L,EB〉 is a tuple of a vector of boxgraphs
�L and a between-boxgraph edge matrix EB . Each boxgraph
L ∈ �L is a triple L = [N,EW , F ] where N denotes a set of
nodes; EW , within-boxgraph edges; and F , a score vector of
that boxgraph. Let O denote a set of object labels. Notation-
ally, we say that Fl specifies the score vector F for boxgraph
l; Fl[o] is the F score of the node representing label o ∈ O
in boxgraph l. Similarly, nl[o] is the node representing ob-
ject label o in boxgraph l, e.g., in Figure 2, n2[dishwasher]
refers to the node in the center in boxgraph 2, and its score
F2[dishwasher] is 0.4.

5.2 Edge Weights as Object Relations

Iteratively, in MultiRank, the nodes (candidate labels) that
are consistent with human-described relationships absorb
scores from those nodes that are not, moving up in their
ranks. For example, suppose that a person said “The cabi-
net is above the dishwasher” as depicted in Figure 2. The
bounding box represented by boxgraph 2 is initially misclas-
sified (i.e., the label with the highest score is not the correct
label, dishwasher). After receiving the human’s description,
however, node dishwasher starts absorbing scores from its
neighbors in boxgraph 2 because the edge between that node
and node cabinet in boxgraph 1 matches the description.

For each spatial relation φ(i, j) that a human provides,
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e.g., above (cabinet, dishwasher), MultiRank enumerates all
the possible pairs of bounding boxes or boxgraphs (l1, l2)
that fit relation φ and check whether the nodes nl1 [i] and
nl2 [j] representing object labels i and j in l1 and l2 re-
spectively are present in the graph. In the example above,
if bounding box 1 is above bounding box 2 and there is cab-
inet as a candidate label in boxgraph 1 and node dishwasher
in boxgraph 2, then the node pair is added into the relations
matching set R = {φ(n1[cabinet], n2[dishwasher])...}.

After matching all possible relations to the bounding
boxes and nodes, the algorithm assigns weights to both
within and between edges, denoted by w ∈ �EW and b ∈ �EB ,
respectively, as follows. For each relation φ(nl1 [i], nl2 [j]),
all edges within boxgraph l1, denoted by wl1 [o, o

′]; o, o′ ∈
O, directed towards nl1 [i] are updated as the F score of
nl1 [i]:

∀k ∈ nl1 , wl1 [k, i] = F
(0)
l1

[i]. (1)

Similarly, all between-edges in l2 directed at nl2 [j] are
updated to the value F

(0)
l2

[j]. Given the same relation
φ(nl1 [i], nl2 [j]), the two between-boxgraph edges bl1,l2 [i, j]
and bl2,l1 [j, i] from nl1 [i] to nl2 [j] and vice versa are updated
as the source’s F score:

bl1,l2 [i, j] = F
(0)
l1

[i] and bl2,l1 [j, i] = F
(0)
l2

[j] (2)

Following our cabinet-dishwasher relation example, Fig-
ure 3 shows a bold edge between node cabinet in boxgraph
1 (blue node) and node dishwasher in boxgraph 2 (green
node) as a matching relation. For within-boxgraph edges,
every node in boxgraph 1 transfers 0.8–i.e., the score from
CV denoted by F

(0)
1 [cabinet]–of its score to n1[cabinet].

Similarly, every node in boxgraph 2 transfers 0.4 of
its score to n2[dishwasher]. Next, two between-boxgraph
edges are updated: n1[cabinet] transfers 0.8 of its score to
n2[dishwasher] (edge b1,2[cabinet, dishwasher] = 0.8) and
n2[dishwasher] in boxgraph 2 transfers 0.4 of its score to
n1[cabinet] in boxgraph 1 (edge b2,1[dishwasher,cabinet] =
0.4). Weight of dotted links in the graph are set to 0.

We note that the graph generated follows the Markov as-
sumption; therefore, the scores iteratively converge under a
random walk algorithm. As in a Markov chain, the edge ma-
trix is normalized as a probabilistic transition matrix, i.e.,
each column sums to 1. In addition, the score vector is also
normalized to sum to 1.

5.3 Iterative Convergence Using Random Walk

Intuitively, one should interpret the graph and its flow of
scores as follows: The nodes without matching relations will
propagate their scores to other nodes while the nodes with
matching relations will preserve their scores, resulting in a
graph that is biased to rank those nodes that are consistent
with given relations higher than others.

The F scores flow between nodes and across edges iter-
atively until each converges. We update the score vector for
each boxgraph Fl:

F
(t+1)
l = αF

(0)
l +(1−α)EW,l·{βlF

(t)
l +

∑

l2∈Rl

βl2EB,l2,l · F (t)
l2

}

(3)

Figure 3: An example showing the edges between and within
boxgraphs for a pair of boxgraphs that matches a given spa-
tial description. The values shown here are before they have
been normalized.

where F (t)
l is the score vector for boxgraph l at the tth itera-

tion; EB,l2,l, the transition matrix from boxgraph l2 to box-
graph l; α, a parameter to balance between the initial CV
probabilities and the updated probabilities that use the hu-
man input; and β, defined as weight to balance the influence
of different boxgraphs as follows:

βl = max(F
(0)
l )/

∑

l2∈{l,Rl}
max(F

(0)
l2

) (4)

where Rl are the relations that connect boxgraph l to all
other boxgraphs li. The intuition for β is that the boxgraphs
with higher CV scores should be more reliable sources for
updating scores. We iteratively update the score vectors until
convergence (Ipsen and Kirkland 2005). The final F scores
are MultiRank’s re-ranked results in an effort to improve the
initial CV recognition model.

5.4 Edge Weights with Even More Context

The edge weights represent relationships between label
probabilities for a single object and between objects. There
are many more options for adding contextual information to
the MultiRank graph in addition to spatial relations. In our
experiments, we also used co-occurrence data from human-
labeled online sources as well as the confusion matrix of the
vision-only algorithm to update edge weights. We apply the
co-occurrence matrix into the between-boxgraph weight as-
signment as illustrated in Figure 4. For example, the edges
between node i in boxgraph 1 and node j in boxgraph 2
could be weighed according to the (i, j) element in the co-
occurrence matrix. Similarly, confusion matrix shows which
object labels are less likely to be misclassified. We update
the within-boxgraph weights to represent the likelihood of
an object being misclassified by the first-pass CV algorithm.

6 Experiments

We evaluate MultiRank with human-generated data against
a vision-only model, one of the recent computer vision algo-
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Figure 4: Illustration of weight assignment for within-
boxgraph and between-boxgraph edge matrices using con-
text information.

rithms that will be described in the following sections. We
validate our algorithm on the NYU depth dataset which con-
tains many indoor scenes such as kitchens and hundreds of
different objects. For evaluation metrics, we use accuracy
and mean average precision (mAP) for recognition tasks,
and F1-score for a detection task as in Figure 8. In the fol-
lowing subsections, we describe the experimental settings
and report the results.

6.1 Image Dataset

The NYU depth dataset (Silberman et al. 2012) is com-
posed of 1449 scenes and 894 kinds of objects. Images in the
dataset are filled with complex environments frequently con-
sisting of more than 20 labeled, overlapping and occluded
objects. In each image, RGB values for each pixel and also
depth information are provided, as are the ground truth ob-
ject positions; bounding boxes are labeled with the true ob-
ject names. For our experiments, we removed those labels
that occurred fewer than 50 times, resulting in 74 possible la-
bels for each bounding box. While typically this would mean
that our MultiRank algorithm creates 74 nodes for each box,
we reduced the number of label nodes to the top 20 for each
bounding box in order to reduce noise in the prediction re-
sults.

6.2 Computer Vision (CV) Algorithm

This section describes the vision-only object recognition
system used in our experiment. Object recognition can be
decomposed into two subtasks: object (bounding box) de-
tection and object classification. In the experiments, we used
both the ground truth and detected bounding boxes.

Object Detection To detect bounding boxes, we used the
Constrained Parametric Min-Cuts (CPMC) algorithm (Lin,
Fidler, and Urtasun 2013) (Carreira and Sminchisescu
2012) on 2D and 3D information2. The classifier was trained
on 795 images from NYU depth dataset and tested on the
rest of images. We selected only foreground objects with

2We note that 3D information is used only for detection.

Figure 5: Accuracy under varying α values on validation set.

top 1 top1/top2 ratio
correct 0.5662 (0.2283) 13.87 (20.81)
wrong 0.3134 (0.1441) 2.62 (2.83)

Table 1: Correlation between the CV algorithm’s confidence
values and the actual recognition output: The top 1 is the
highest confidence score distribution (mean, standard devia-
tion) and the top1/top2 ratio is the ratio between the highest
and the second highest values.

high occurrence frequency for training the object detection
model, resulting in overall 21 labels. The bounding box can-
didates are counted as recalled if the intersection over union
(IOU) is higher than 50%, and the recall rate of the object
detection is in the 70% range. For each image we extract top
30 bounding boxes according to the likelihood.

Object Classification Given a set of bounding boxes, we
used a classifier to assign labels to them. We used Caffe (Jia
et al. 2014) to extract the fully-connected layer, known as
fc7 features (2D image features), in Alexnet pre-trained on
ILSVRC 2012(Krizhevsky, Sutskever, and Hinton 2012) for
each bounding box. Using the fc7 features, we trained an
SVM classifier (Chang and Lin 2011) to categorize each box
into 74 object labels. We note that, due to the limited number
of training data, we used an SVM instead of deep learning as
the classifier for our task. Using 5-fold cross validation, this
vision-only model achieves an accuracy of 0.6299 and mAP
0.7240 in the ground-truth bounding box case and accuracy
0.4229 and mAP 0.2820 in the detected bounding box case.

6.3 Human-generated Information

For the spatial relations, we randomly selected 40 images
out of 1449 images and manually labeled each image with
10 spatial relations; 10 additional images were used for val-
idation to tune the parameter α in Equation (3). For human-
labeled online co-occurrence, we collect image labels from
Shutterstock in which label lists are well curated. Using the
74 labels from NYU depth dataset, we downloaded up to
500 images matching each label. For each of the 74 × 500
images, we downloaded the complete human-generated la-
bel list. Then, we counted the frequency of co-occurrence of
every possible pair of labels across each label list and record
it in a co-occurrence matrix.
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Figure 6: Different β parameter setting: uniform is the re-
sults using same value for every layers, while variant is the
results using Equation (4).

6.4 MultiRank Parameters

MultiRank includes two parameters: α and β. Parameter α
represents the informativeness of contextual information in
the re-ranking process; if the value of α is 1 then the algo-
rithm purely relies on CV whereas the value of α = 0 in-
dicates the recognition is only based on contextual informa-
tion without using vision. The parameter β similarly takes
the confidence score of each boxgraph into account as op-
posed to treating all of the boxgraphs equally using a uni-
form value. These parameters were tuned empirically.

Figure 5 shows that the accuracy is maximized when
the CV output and the contextual information are fused at
around 6 : 4 ratio when 10 relations are used. Generally, the
optimal value for α is decreased as more descriptions are
provided, which indicates that perception based on verbal
descriptions can be more effective than visual analysis.

In general, a higher confidence value from CV does not
necessarily mean that the recognition outcome is more likely
to be correct, i.e., an algorithm may generate a wrong out-
put with a high confidence. Parameter β is justified only if
a first-pass CV algorithm’s confidence score is a good in-
dicator for the actual recognition accuracy. As shown in Ta-
ble 1, our choice of CV algorithm’s confidence score is posi-
tively correlated with the accuracy. In Figure 6, we compare
the performance using different setting of β value. “Uni-
form” is the results using uniform value for every layers as
β value, while “variant” is the results using the value de-
fined as Equation (3), which is proportional to the highest
confidence score among labels in each layer. This result sup-
ports our motivation for parameter β that the use of variant β
(over a uniform value) during score updates defined in Equa-
tion (3) improves the results.

6.5 Experimental Results

The baseline naı̈ve fusion algorithm: The naı̈ve fusion
algorithm is a simple model where the reranked scores for
a boxgraph is computed as a weighted sum of its own label
confidence score and the confidence scores of other bound-
ing boxes with matching relations. Table 2 shows the results
using naı̈ve fusion algorithm. Even when we used 10 rela-
tions per image, only minor improvements (2.25% in accu-
racy and 3.06% in mAP) have been observed.

Accuracy mAP
vision-only 0.6299 0.7240

naı̈ve fusion (1) 0.6309 0.7296
naı̈ve fusion (5) 0.6435 0.7442
naı̈ve fusion (10) 0.6527† 0.7546∗

spatial relations (1) 0.6331 0.7327†
spatial relations (3) 0.6607∗ 0.7515∗
spatial relations (5) 0.6856∗ 0.7691∗
spatial relations (8) 0.7143∗ 0.7896∗

spatial relations (10) 0.7240∗ 0.8002∗
co-occurrence 0.6331 0.7288

confusion+
co-occurrence 0.6558† 0.7527∗

Table 2: Results of vision-only model versus MultiRank
using different human-generated information. Significant t-
test: ∗=p value <= 0.05, †=p value<= 0.10.

Comparisons of different information sources We re-
port on the performance of the vision-only model and how
the performance changes when the same CV algorithm is
supplemented with different subsets of our human-generated
information. For simplicity, we refer only to the different
subsets of information even though we did use the CV re-
sults in each test. We first varied the number of spatial rela-
tions (1, 3, 5, 8, 10) that were used in our graph. The results
are recorded as the average score of 3 random samples of
relations. In addition to spatial relations, we also used con-
textual information such as the CV confusion matrix (to take
the weakness of the CV algorithm into account) and the ob-
ject co-occurrence statistics collected from Shutterstock. We
tested different combinations of these.

Table 2 shows the results using nav̈e fusion and Multi-
Rank with different kinds of contextual information. The
vision-only model is the first-pass prediction results of CV
recognition model using oracle bounding boxes for object
detection. Comparing the vision-only to the varied num-
ber of spatial relations, the results indicate that more rela-
tions result in more improvement. Using only 1 relation,
marginal improvement was observed in mAP, whereas no
significant improvement in accuracy. With 3 relations, we
started observing statistically significant improvement in ac-
curacy. 9.41% accuracy and 7.62% mAP improvement was
achieved using 10 relations.

Whereas the use of verbal descriptions that may require
human effort during run-time, the use of the object co-
occurrence and the confusion matrix can be achieved with-
out involving people at run-time. Row of confusion+co-
occurrence in Table 2 displays the results using 1) confu-
sion matrix as within-boxgraph edge weights and 2) co-
occurrence matrix as between-boxgraph edge weights; the
accuracy was marginally improved by 2.6% in this case
which is comparable to using 3 or fewer verbal descriptions
per image.

Results based on the detected bounding boxes In Fig-
ure 7, the performances of the vision-only system are
compared between the oracle and the detected bounding

4608



Figure 7: Comparison of MultiRank results on accuracy
based on detected and ground-truth bounding boxes.

bounding box ground-truth detected
Accuracy general error general error

vision-only 0.6299 0.4229
relation(10) 0.7240 0.7241 0.5885 0.6857∗
relation(5) 0.6856 0.6899 0.5857 0.6714∗
relation(3) 0.6607 0.6753∗ 0.5723 0.6600∗
relation(1) 0.6331 0.6526∗ 0.5009 0.5990∗

Table 3: Accuracy of MultiRank using descriptions includ-
ing general versus error-prone objects. Significant t-test:
∗=p value <= 0.05.

boxes cases. The accuracy of vision-only system drops from
62.99% to 42.28% when using the detected bounding boxes;
however, the amount of improvement after incorporating de-
scriptions is more substantial. Intuitively, the reason might
be that contextual information is more informative when vi-
sion is poor.

Results focusing on error-prone bounding boxes Hith-
erto, we have used general spatial relations in the experi-
ments, that is, the descriptions were selected without consid-
ering the user’s interest nor the weakness of the vision-only
model. We applied the relations to the misclassified objects
to simulate possible scenarios where humans are asked to
correct the object labels using verbal descriptions. For ex-
ample, consider a cup on the desk is misclassified as pen. A
human may correct this mistake by saying The cup is above
the desk. By focusing on spatial relations related to the mis-
classified bounding boxes, we achieved further improvement
as shown in Table 3. This result suggests that intelligently
choosing the spatial relations be applied when possible. As
the number of spatial relations gets lower, the error-specific
relations achieve more improvement. The right part of Ta-
ble 3 shows the results based on detected bounding boxes.
Although the accuracy in an absolute scale is still lower than
the one using ground-truth bounding boxes, the relative im-
provement is much higher, i.e., 9.8% compared to 0.71%
using 10 relations. This is because the detected bounding
boxes are more prone to have errors in them, leaving a larger
room for improvement.

Results focusing on objects of user interest In the last
set of experiments, we evaluated the performance only based
on the objects referred to in humans’ commands. The results
in Figure 8 provide a supporting evidence for our intuition

Figure 8: Performance improvement on the objects of inter-
est after giving one relation.

that the major advantage of our approach would apply to the
objects of user interest, i.e., those objects that are relevant to
a given task. We define the task level error as the recall error
combined with the precision error among the recalled. The
results show that the task level error is substantially reduced
by 12% when we use only 1 relation per image and by more
than 20% with 3 relations.

7 Conclusion

In this paper, we propose a graph-based perception algo-
rithm, MultiRank, that can fuse information from computer
vision approaches and other perception sources such as hu-
man labeled data available online and verbal descriptions
provided by people in a shared environment. We apply the
idea to the object recognition problem, and demonstrate that
our approach of using human-generated data can signifi-
cantly improve over the computer vision only algorithm.
MultiRank has a limitation that it is difficult to generalize
to support n-ary relations or aggregate constraints. Our on-
going effort builds on our current model to address this lim-
itation, by converting the graph into a factor graph where a
structural factor can be included to represent dependencies
over multiple random variables in the graph.
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