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Abstract
In our work, a robot can proactively ask for help when
necessary, based on its awareness of its sensing and ac-
tuation limitations. Approaches in which humans pro-
vide help to robots do not necessarily reason about
the human availability and accuracy. Instead, we model
the availability of humans in the robot’s environment
and present a planning approach that uses such model
to generate the robot navigational plans. In particu-
lar, we contribute two separate planners that allow a
robot to distinguish actions that it cannot complete au-
tonomously from ones that it can. In the first planner,
the robot plans autonomous actions when possible and
requests help to complete actions that it could not oth-
erwise complete. Then for actions that it can perform
autonomously, we use a POMDP policy that incorpo-
rates the human availability model to plan actions that
reduce uncertainty or that increase the likelihood of the
robot finding an available human to help it reduce its un-
certainty. We have shown in prior work that asking peo-
ple in the environment for help during tasks can reduce
task completion time and increase the robot’s ability to
perform tasks.

Introduction
Robotic technology has had many advances, but mobile
robot agents are still not universally present in our daily en-
vironments. While the ultimate goal is for robots to perform
tasks autonomously, we realize that robots still have many
limitations, at the perception, cognition, and execution lev-
els. Interestingly, many of the limitations may not be limita-
tions for humans. In particular, humans are capable of help-
ing robots in two ways:
• Increasing Capabilities: performing physical tasks that

a robot does not have the capability to perform au-
tonomously, and

• Reducing Uncertainty: reducing a robot’s uncertainty
about its state or the effects of its actions.

Robots that can plan for these limitations during their tasks
and request help to increase its capabilities or reduce un-
certainty can increase their task performance (Rosenthal,
Biswas, and Veloso 2010).
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To complete tasks in uncertain environments, many robots
have relied on human supervisors who are always 1) avail-
able to monitor their progress and 2) accurate to help them
and tell them which action to take (e.g., teleoperators (Do-
rais et al. 1999)). As more robots are deployed in our en-
vironments, it will be infeasible to employ supervisors for
each robot. To reduce the dependence on supervisors during
tasks, we are interested in robots that ask for help from peo-
ple already located in the environment - particularly those
in known static locations such as offices (Rosenthal, Veloso,
and Dey to appear). Compared to traditional supervisors, hu-
mans in the environment also have limitations:
• the robot must travel to find them in their offices,
• the robot must interrupt them in their offices,
• they may not be in their offices and have limited availabil-

ity to provide help, and
• they may not always be accurate.
As a robot plans to navigate in the environment, we argue
that it must not only consider the distance and expected un-
certainty on its many possible paths, but also who is avail-
able to help and where, the cost of interrupting and asking
them, and whether they will provide an accurate response. A
robot that relies on humans in the environment but does not
model those humans may navigate along shorter paths with
no humans available or with humans who provide inaccurate
help. As a result, a robot may not be able to receive the help
it needs and may fail to complete tasks.

In this work, we first present our robot CoBot that per-
forms tasks autonomously but has localization uncertainty
and manipulation limitations, and our environment with hu-
mans located offices that the robot performs tasks in. We
then contribute a two-level framework for task-planning that
includes asking humans in the environment to help which
our robot uses to perform services. Our Behavior Interac-
tion Planner first plans the high level goals of the robot such
as navigating to the elevator or another location, speaking its
goals to humans in the environment, and finding humans if it
is incapable of performing an action autonomously (Rosen-
thal, Biswas, and Veloso 2010; Veloso et al. 2011). This high
level plan ensures that the task can be completed. Then, the
robot plans its motions through the environment using a Hu-
man Observation Provider POMDP (HOP-POMDP (Rosen-
thal, Veloso, and Dey 2011)) that takes into account human



accuracy and availability to reduce localization uncertainty
if it may need help navigating along its path. We have shown
that humans in our environment are willing to help the robot
increase its capabilities and reduce its uncertainty, and that
this help can improve task performance.

Related Work
Robots have limitations that affect their task performance.
Human supervisors have traditionally been used to over-
come a robot’s limitations by monitoring robot progress and
intervening when necessary, but such help can be very ex-
pensive in terms of monitoring time and cognitive load on
the helper (Yanco, Drury, and Scholtz 2004). Much recent
work has focused on different techniques to allow robots to
reason about their own limitations and capabilities to proac-
tively ask for help from supervisors, teachers, and passers-
by or bystanders in the environment. These different types
of help have been classified in a variety of ways (Goodrich
and Schultz 2007; Hearst 1999; Parasuraman, Sheridan, and
Wickens 2000; Scholtz 2002), but we differentiate our work
from previous approaches that assume humans are always
available to help and therefore do not plan when and who it
is appropriate to ask.

Task Planning to Increase Capabilities
Much of the work on increasing robots’ capabilities beyond
their autonomous behavior has focused on teleoperation.
Many different methods have been proposed for supervisors
to provide help including providing assistance at different
levels of granularity depending on the robot’s capabilities
(Dorais et al. 1999) and participating in mixed-initiative in-
teractions to ensure the robot performs its task effectively.
Teachers have been able to accurately label data both when
the robot requests it and through corrective feedback after
the action is performed in order for robots to learn policies
for which actions to take (Argall et al. 2009). These tech-
niques vary in the amount of understanding the robot has
about its own capabilities. If it knows its capabilities, it can
proactively plan to ask for a supervisor to take control when
needed. However, the prior work all assumes that there is a
human supervisor that is always available to help the robot.

Task Planning to Reduce Uncertainty
Supervisors have also been used to help reduce uncertainty
that robots may have when interpreting their sensor data
(Fong, Thorpe, and Baur 2003). For example, recent work
has focused on navigation planning using “oracles” who are
always available and accurate to help robots execute using
POMDPs. Oracular POMDPs (OPOMDPs) have been pro-
posed to plan for needing help to reduce uncertainty through
its own actions or through asking humans for help without
modeling the human in states explicitly (Armstrong-Crews
and Veloso 2007). However, OPOMDPs assume that there is
an always-available oracle that can be queried for observa-
tions from any of the robot’s states at a cost of asking.

More recently, there has been an interest in distribut-
ing the burden of uncertainty help among crowds of by-
standers (Asoh et al. 1997; Hüttenrauch and Eklundh 2006;

Michalowski et al. 2007; Weiss et al. 2010)) Bystanders and
passers-by in busy environments have helped robots navi-
gate in locations as varied as offices (Asoh et al. 1997), con-
ferences (Michalowski et al. 2007), and even on the street
(Weiss et al. 2010). While humans are not actively in con-
tact with the robot all the time, there is still an assumption
that at least one human will help the robot shortly after it
requests it. To the authors’ knowledge, there has been little
work on planning who to ask in an environment (Shahaf and
Horvitz 2010). Because these robots do not have a way to
model bystanders in the environment in terms of who will
be available or where they are located, nor can they proac-
tively plan to contact a known helper, they have little control
over the help they receive and cannot plan to optimize their
performance using that help.

Task Planning with Capabilities and Uncertainty
In this work, we are interested in planning tasks for robots
that overcome both capability and uncertainty limitations.
Beyond the aforementioned work on teleoperation and
mixed-initiative robots which requires a human supervisor to
monitor the robot at all times to help with any problems that
may arise, there has been little work focused on planning for
the need of several different types of help from several dif-
ferent people. Even our prior work (Rosenthal, Biswas, and
Veloso 2010) which incorporated both types of help did not
plan for who was available.

In this work, we propose a two-layered task planner to
plan the autonomous actions and the interaction behaviors to
request help (e.g., (Simmons et al. 1997)). In the Behavior
Interaction Planner, the robot plans actions to ensure that
it can complete tasks. In other words, it plans autonomous
actions when possible and when it lacks a capability it plans
to find someone to ask for help. The HOP-POMDP planner
plans to complete tasks under uncertainty while explicitly
modeling the availability and accuracy of different people
to determine who to ask and where to navigate. Next, we
describe our mobile robot and academic environment, and
then we describe its task planning within that environment.

Robot and the Environment
Our environment consists of one nine-floor of an academic
building containing approximately 79 offices per floor. On
one floor, for example, there are 35 individual offices for
faculty and staff and 44 offices each shared by 2-3 grad-
uate students. Our robot, CoBot (Fig. 1(a)), is capable of
autonomous localization using the Kinect and WiFi and om-
nidirectional navigation in the environment as well as di-
alog with humans1. It has a laptop with the screen facing
forwards, towards from the direction of movement, that oc-
cupants can use to interact with the robot while it performs
tasks autonomously in our building for the occupants.

However, our goal is to make an agile, inexpensive robot
platform and, as a result, CoBot has some limitations. CoBot
has high localization uncertainty in large open spaces (Fig.
1(b) - darker grey areas indicate more uncertainty) and also

1Thanks to Mike Licitra and Joydeep Biswas for their work on
the CoBot hardware and localization/navigation.



(a) The CoBot2 Robot (b) Areas of Uncertainty

Figure 1: (a) CoBot is capable of autonomous localiza-
tion and navigation but has manipulation limitations without
arms and (b) has localization uncertainty in the hallways of
the building (the darker the grey the more uncertainty in that
location).
has difficulty perceiving chairs found in common areas re-
sulting in increased navigation time as it attempts to re-
localize or avoid these areas entirely. Additionally, CoBot
does not have arms or the ability to manipulate objects to
push chairs out of the way, press elevator buttons to navi-
gate between floors, or pick up the mail or other objects to
give to the building occupants. While the robot can over-
come some of these challenges autonomously, inevitably, it
must ask for help from humans sometimes to resolve each
of these limitations, particularly the physical ones.

In prior work, we have found that several of our build-
ing occupants are willing to help the robot with localization
questions to reduce uncertainty, as well as help it increase
its capabilities by moving chairs out of the way and writ-
ing notes to other building occupants (Rosenthal, Veloso,
and Dey to appear). Given that people in the environment
are willing to help, we would like to model their availability
so that CoBot can proactively plan to visit offices when it
needs help. First, we describe the Behavior Interaction Plan-
ner which plans autonomous actions and help to increase its
capabilities with manipulation tasks. Then, we’ll describe
our HOP-POMDP navigational planner which plans paths
where humans are likely to be available in case the robot
needs help reducing uncertainty.

Behavior Interaction Planner
Typically, high-level task planners plan only the autonomous
actions to complete a task and a separate dialog manager
interacts with humans to receive the task requests such as
transporting objects. Our goal is for CoBot to complete tasks
as autonomously as possible, but we increase its capabili-
ties through asking for help from humans in the environ-

ment. Additionally, as CoBot performs actions, humans may
want to know what robot’s goals are. Our Behavior Inter-
action Planner therefore reasons about a robot’s incapabil-
ities (Rosenthal, Biswas, and Veloso 2010) and human in-
terest in the robot and plans for both human interactions in
addition to the autonomous actions.

Modeling Capabilities, Actions and Interactions
We define actions and interactions that are required to com-
plete a task along with their preconditions and effects and
we model the CoBot’s capabilities in terms of the actions
it can perform. In particular, if CoBot has probability p =
0 of completing an action, it should ask for help; other-
wise, it should attempt to complete the action autonomously
(Rosenthal, Biswas, and Veloso 2010).

For ask interactions, there are no preconditions, so
CoBot can ask for help at any time. In order to do so, the
robot plans to speaks the defined question text and display
the question with multiple choice answers on the screen, and
the effect is the required human response (e.g. clicking a
‘Done’ button on CoBot’s user interface when a task is com-
pleted). If the human clicks a button that is not the required
response or there is no response for 30 seconds, the robot
replans its task and will find another person to ask for help.

For navigate actions, the precondition is that the robot
speak aloud its new goal to humans in the area, and at ex-
ecution time the robot sends a desired location to the HOP-
POMDP navigation planner to plan and execute a route that
is likely to have available help if the robot needs to reduce
uncertainty. The planning effect is that the robot is in the lo-
cation that it should navigate to. Any other actions needed
for a task can be defined similarly in terms of autonomous
actions and requests for help.

Autonomous Planning and Execution
Given a new task, the robot plans the sequence of
actions necessary to complete it. For example, in the
Transport(fromroom#, toroom#, object) task, the Be-
havior Interaction Planner plans the following sequence of
actions (conditional plan in Figure 2a, illustrated in Fig-
ure 3): navigation to the pick-up location fromroom#,
ask for the object o, navigation to the drop-off location
toroom#, and ask for task completion confirmation. It also
does an initial check to ensure that there is enough battery
power to get the robot to the location.

The Behavior Interaction Planner reasons about the re-
quirements of navigation to plan for a robot’s incapabili-
ties. For example, if CoBot (with no arms) must navigate
between different floors of the building, the robot must not
only execute navigateto actions in navigation, but also
ask for help pressing elevator up/down buttons, pressing the
correct floor button, and holding the door open for the robot.
In these cases, the Behavior Interaction Planner plans not
just to navigate to the goal location but also the human in-
teractions and questions necessary to perform the task com-
pletely (conditional plan in Figure 2b:

• navigateto to elevator,

• ask for help pressing the up/down button,



(a) Transport Task Plan (b) Navigation Plan

Figure 2: (a) CoBot executes the conditional plan for the Transport task. (b) For each of the Navigation actions in the
Transport task, it executes this plan to travel between floors and ask for help.

• navigateto into the elevators,

• ask for help pressing the floor number and recognizing
that floor,

• navigateto out of the elevator,

• navigateto to goal

To summarize the Transport(fromroom#, toroom#, object)
task within the Behavior Interaction Planner (Fig. 2), the
robot first executes the Navigation plan to travel to
the fromroom#. Upon arriving at the location, the robot
asks for help picking up the object. Then, it executes the
Navigation plan to travel to the toroom#.

Next, we describe the HOP-POMDP navigation plan-
ner which we use for navigateto actions generated from
the Behavior Interaction Planner to increase the likelihood
of finding available people to help the robot along its paths.

Humans Observation Provider POMDPs
While the robot can plan generally to ask for help, it must
navigate to proactively find people who are available at exe-
cution time. We will model locations, availability, cost of in-
terruption and asking, and accuracy of humans so that robots
can consider the benefits of asking different humans in addi-
tion to the distance to its goal and determine who to ask and
where to navigate. Without a model of humans, the robot
may choose a path that has no help available or one where
humans often provide inaccurate help, and the robot may
fail to complete its task if it actually needs help along these
paths. We introduce the HOP-POMDP as a planning frame-
work to determine which path to take in the environment
(Rosenthal, Veloso, and Dey 2011).

Humans as Observation Providers
Unlike oracles modeled in OPOMDPs (Armstrong-Crews
and Veloso 2007), humans in the environment are not al-
ways available or interruptible (Shiomi et al. 2008), may

not be accurate (Rosenthal, Dey, and Veloso 2009), and they
may have a high cost of asking or interruption (Rosenthal,
Biswas, and Veloso 2010). We formalize these limitations
within the POMDP framework. In particular, we will model
the probability of a robot receiving an observation from a hu-
man in terms of the human’s availability and their accuracy
to reduce the uncertainty of the robot. A similar formulation
can be achieved for increasing capabilities.

Location We assume that humans are located in a partic-
ular known location in the environment, and can only help
the robot from that location. When the robot is in state s it
can only ask for help from the human hs in the same state.
As a result of taking the ask action ask, the robot receives
an observation o from the human.

Availability The availability of a human in the environ-
ment is related to both their presence and their interruptibil-
ity (Fogarty et al. 2005). We define availability αs as the
probability that a human provides a non-null observation o
in a particular state s:

0 ≤ αs ≤ 1 (1)

If there is no human available in particular state, αs = 0. A
human provides observations with probability∑

o 6=onull

p(o|s,ask) = αs (2)

and would provide no observation onull otherwise

p(onull|s,ask) = 1− αs (3)

Receiving the onull is equivalent to receiving no observation
or timing out waiting for an answer. This is to ensure that∑

o p(o|s,ask) = 1.

Accuracy The non-null observation o that the human pro-
vides when they are available depends on their accuracy η.
The more accurate the human hs, the more likely they are to



(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 3: (a,b,c) After CoBot-2 receives a Transport task request, it autonomously navigates to the location lp to pick up a bottle
of water. (d,e) Upon arriving to lp, CoBot-2 asks the user to place the bottle of water and press ‘Done’. (f,g) Then, CoBot-2
navigates to location ld to deliver the bottle of water. (h,i) When the user presses ‘Done’ CoBot-2 navigates back to its home
location. (The complete example sequence is submitted as a video with this paper.)

provide a true observation os. Otherwise, hs provides obser-
vations os′ where s′ 6= s.

Formally, we define the accuracy ηs of hs as the probabil-
ity of providing os compared to the probability they provide
any non-null observation o 6= onull (their availability αs).

ηs =
p(os|s,ask)∑

o 6=onull
p(o|s,ask)

=
p(os|s,ask)

αs
(4)

Cost of Asking It is generally assumed that supervisors
are willing to answer an unlimited number of questions as
long as their responses help the robot. However, in active
learning, there is a cost of asking in terms of the time it takes
for them to answer the question and the cost of interrupting
them to limit the number of questions asked.

Let λs denote the cost of asking for help from hs. These
costs vary for each person, but are assumed to be known
before planning. The cost for querying the human if they
answer with a non-null observation o 6= onull is

R(s,ask, s, os) = −λs (5)

However, if the person is not available to hear the question
or provide a response, there is no expected cost.

R(s,ask, s, onull) = 0 (6)

Our reward structure has consequences that affect policy
solutions. In particular, the robot does not receive negative
reward when it tries unsuccessfully to ask someone for ob-
servations so it can afford to be riskier in who it tries to ask

rather than incurring a higher cost of asking someone who is
more available.

HOP-POMDP Formalization
To briefly review, POMDPs are represented as the tuple
{S,A,O,Ω, T,R} of states S, actions A, observations O
and the functions:
• Ω(o, s, a) : O×S ×A - observation function, likelihood

of observation o in state s after taking action a
• T (s, a, s′) : S ×A×S - transition function, likelihood of

transition from state s with action a to new state s′

• R(s, a, s′, o) : S ×A× S ×O - reward function, reward
received for transitioning from s to s′ with action a and
observation o
We define the HOP-POMDP as a POMDP for a robot

moving in the environment with humans, and then discuss
differences between humans as observation providers and
noisy sensors.

Let HOP-POMDP be {Λ,S, α, η,A,O,Ω, T,R}. where
• Λ - cost of asking each human
• α - availability for each human
• η - accuracy for each human
• A = A∪{ask} - autonomous actions and a query action
• O = O ∪ {∀s, os} ∪ onull - autonomous observations, an

observation per state, and a null observation



• T (s, aask, s) = 1 - self-transition for asking actions
Specifically, let hs be the human in state s with availabil-

ity αs, accuracy ηs, and cost of asking λs. Our observation
function Ω and reward function R reflect the limitations of
humans defined in Equations 1-6. The remaining rewards,
observations, and transitions are defined as with any other
POMDP.

Plan Execution
The best HOP-POMDP policy is one in which the robot
takes actions that result in low uncertainty or takes actions
that leave it in states with a high possibility of a human re-
ducing its uncertainty. As a result, the robot may plan longer
paths to navigate in the hallways, but the robot is more likely
to navigate with low uncertainty. With lower uncertainty, the
robot will navigate faster to its goal locations (Rosenthal,
Biswas, and Veloso 2010). Additionally, if the robot is tak-
ing paths with a high likelihood of human availability, it can
ask these same people to help increasing its capabilities (e.g.,
pressing elevator buttons).

Conclusions and Future Work
Robots are increasingly autonomous in our environments,
but they still must overcome limited sensing, reasoning, and
actuating capabilities while completing services for humans.
While some work has focused on robots that proactively re-
quest help from humans to reduce their limitations, the work
often assumes that humans are supervising the robot and al-
ways available to help. We relax these assumptions by ask-
ing for help from humans in the robot’s environment and
by planning to proactively ask for help. Using the two-layer
planning, the robot can plan to complete tasks by first de-
termining when it must ask for help and planning for those
human interactions. Then, for other actions, it can use our
HOP-POMDP framework to plan autonomous policies that
limit uncertainty when possible and ask for help to reduce
uncertainty otherwise. For future work, we will compare our
two-layer planner to other planning algorithms on our real
deployed robot, CoBot.

References
Argall, B.; Chernova, S.; Veloso, M.; and Browning, B. 2009. A
survey of robot learning from demonstration. Robotics and Au-
tonomous Systems 57(5):469–483.
Armstrong-Crews, N., and Veloso, M. 2007. Oracular pomdps: A
very special case. In ICRA ’07, 2477–2482.
Asoh, H.; Hayamizu, S.; Hara, I.; Motomura, Y.; Akaho, S.; and
Matsui, T. 1997. Socially embedded learning of the office-
conversant mobile robot jijo-2. In IJCAI-97, 880–885.
Dorais, G. A.; Bonasso, R. P.; Kortenkamp, D.; Pell, B.; and
Schreckenghost, D. 1999. Adjustable autonomy for human-
centered autonomous systems. In IJCAI Workshop on Adjustable
Autonomy Systems, 16–35.
Fogarty, J.; Hudson, S. E.; Atkeson, C. G.; Avrahami, D.; Forlizzi,
J.; Kiesler, S.; Lee, J. C.; and Yang, J. 2005. Predicting human
interruptibility with sensors. ACM ToCHI 12(1):119–146.
Fong, T. W.; Thorpe, C.; and Baur, C. 2003. Robot, asker of ques-
tions. In Robotics and Autonomous Systems, volume 42, No. 3-4,
235–243.

Goodrich, M. A., and Schultz, A. C. 2007. Human-robot in-
teraction: a survey. Found. Trends Human-Computer Interaction
1(3):203–275.
Hearst, M. A. 1999. Mixed-initiative interaction: Trends and con-
troversies. IEEE Intelligent Systems 14–23.
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