
Monte Carlo Preference Elicitation for Learning Additive Reward
Functions

Stephanie Rosenthal and Manuela Veloso
Carnegie Mellon University

Pittsburgh, PA USA
srosenth,veloso@cs.cmu.edu

Abstract— AI agents including robots often use reward
functions to evaluate tradeoffs between different states and
actions and to determine optimal policies. We are particularly
interested in reward functions that can be decomposed into an
additive sum of subrewards that are computed on independent
subproblems or features of the state space. If these subrewards
capture different reward metrics, such as user satisfaction and
task completion time, it is unclear how to scale the subrewards
in the reward function to produce an appropriate policy. In this
work, we propose and evaluate a novel Monte Carlo method for
learning the scaling factors of subrewards, in which the training
elicits humans’ preferences between two state-action scenarios.
Because the algorithm elicits preferences over explicit scenarios,
it is less susceptible to human error than previous elicitation
approaches. The preferences are used to generate a set of
inequalities over the scaling factors that we solve efficiently
using a linear program. We show that our algorithm asks for
a number of preferences proportional to log of the number of
scaling factor hypotheses used in the Monte Carlo method.

I. INTRODUCTION

Many AI agents and robots make decisions about actions
to take by assigning rewards to states and actions and
choosing the actions that maximize the agents’ reward.
Defining the reward for each individual state,action pair can
be tedious, particularly if the state space is large, and requires
knowledge about which states are more preferred than others.
Furthermore, the policy preferences of one person may be
different than the preferences of another. For example, one
person who requests tasks for a robot may prefer that it avoid
traveling near people while another may prefer that it take
the shortest path. Interestingly, these preferences are given in
terms of features of the states and not the states themselves.

Assuming that states that can be factored into features [1],
it has been shown that it is possible to define the reward in
terms of these features rather than defining a reward for a
whole state,action pair (i.e., multiattribute utility theory [2],
[3]). By defining the reward function as an additive sum
of subrewards over these features, it is possible to reduce
the problem of generating the reward function to one of
determining how the subrewards should be scaled in relation
to each other. In our previous path preference example, we
can define the state as comprised of two independent state
features - the x,y location and number of people present. The
reward function is then defined as the sum of subrewards for
distance between locations and number of people present.

While it has been common to manually tweak scaling
factors of subrewards in additive reward functions until the

desired policy is reached, much recent work has focused
on eliciting preferences from people in order to learn them
(e.g. [4], [5], [6], [7]). In Inverse Reinforcement Learning, an
agent learns the additive reward function from demonstrated
optimal behavior using linear programming [8]. In preference
elicitation, users are asked to give their preference for
possible states and actions in order to learn reward functions.
The preferences could be direct numerical values (e.g., [9],
[4]) or probabilistic comparisons between multiple states
and actions (e.g., [6], [7]). Each of these methods has been
very successful in learning additive reward functions. How-
ever, the human-computer interaction (HCI) literature says
that non-expert users tend to be error-prone in estimating
numerical or probabilistic preferences and they lose focus
and precision when required to answer many questions or
demonstrate their preferences.

In this work, we propose and evaluate a novel Monte
Carlo algorithm for eliciting non-experts’ preferences in
additive reward functions that finds an approximate solution
for the scaling factors in log of the number of Monte
Carlo hypotheses generated [10]. The algorithm instantiates a
number of scaling factor hypotheses and searches a finite set
of example states to find a pair which most evenly divides the
hypotheses. It then asks the user which of the two states she
prefers with a particular action, and removes the hypotheses
that are invalidated with the new preference. Based on the
HCI literature, preferences for two concrete states should
result in fewer errors than prior elicitation methods. The
preferences form a set of inequalities that can be solved to
approximate the scaling factors. Because the algorithm aims
to divide the hypothesis space in half for each question, the
algorithm will terminate after asking log in the number of
hypotheses questions. Depending on the number questions a
user is willing to answer, the number of hypotheses can be
changed to optimize the scaling factors as much as possible.

The paper is organized as follows. First, we describe
the related work in learning reward functions. Next, we
introduce our Monte Carlo algorithm to learn scaling factors
of subrewards in additive reward functions. We then evaluate
our algorithm in an example robotics application. Finally, we
conclude and discuss open questions and future work.

II. RELATED WORK

We are interested in elicitation techniques for additive
reward functions in which the state s is decomposed into



features si and subreward functions r(si, a) compute the
reward of the feature for the action a. The total reward for
a state s and action a is the sum of the subrewards scaled
by λi importance factors

R(s, a) =
∑
i

λiri(si, a) (1)

Given subreward functions, learning the reward function
requires learning the scaling factors λi.

Prior techniques presented below have been very suc-
cessful for learning additive reward functions for intelligent
agents such as robots. However, they are not feasible to
deploy to non-expert users.

A. Inverse Reinforcement Learning (IRL)

The Inverse Reinforcement Learning problem learns a
reward function that can explain optimal observed action
choices [11]. The algorithm hinges on the fact that because
the actions are optimal, the reward for taking the action a
from the observed state s must be greater than any other
possible action a′ ∈ A from the same state:

∀a′ ∈ A,R(s, a) > R(s, a′) (2)

This algorithm was extended to problems in which each state
is factored into features and the reward function is learned
over features [8]. The set of inequalities resulting from the
observed behavior can be optimally solved for the reward
function using linear programming.

IRL depends on optimal demonstrations to train the reward
function. While experts can easily demonstrate their prefer-
ences in some problems such as robot or car navigation [8],
[5], it may be difficult for novices to 1) perform optimally
[12] and 2) know which demonstrations will best teach the
learner [13]. Instead, novices could be given response choices
about their preferences and asked to confirm them.

B. Explicit Preference Elicitation

Preference elicitation assumes that a person has a re-
ward function that they want an agent to learn but cannot
demonstrate. Instead, the learner asks the person a series of
questions to elicit these preferences. Examples of preference
elicitation include asking the person for a numerical reward
value [9] or to confirm a numerical reward value k [4]:∑

i

λiri(si, a) =? OR
∑
i

λiri(si, a)
?
= k (3)

These preferences can be used to solve for the λs even if the
features si are not independent. However, people may not be
consistent with how they assign numbers to states meaning
that the elicited values may have error. Research on how to
write surveys shows that the order the questions are asked
influences the numerical value they are given [14] and if the
questions are multiple choice the scale of the choices matters
for the answers they will provide [15].

Other work has focused on asking which of two probabilis-
tic scenarios is preferred [7]. The algorithm asks questions of
the form “Would you prefer feature action a in 1) a concrete

state where si = s>i and sj 6=i = s⊥j or 2) with probability
p, s = s⊥ and probability (1 − p), s>?”. Here, s⊥ and s>

are the absolute worst and best states and s⊥j and s>j are the
best and worst value of feature sj . By setting ri(s>i , a) = 1,
the reward for the state s is:

R(s, a) = λiri(si, a) +
∑
j 6=i

λi ∗ 0 = λi ∗ 1 = λi (4)

Similarly, by setting R(s⊥, a) = 0 and R(s>, a) = 1, the
probabilistic outcome

p ∗R(s⊥, a) + (1− p) ∗R(s>, a) = 1− p (5)

Depending on the person’s preference, we can constrain λi <
(1− p) or λi > (1− p). This algorithm chooses p and i to
minimize the regret of the reward function and has been
shown to ask relatively few questions [7]. It is important the
survey be short as response rate has been shown to decline
as the number of questions increase (e.g.,[16]). While this
approach is better than asking for values, it has been shown
that people often overestimate good things to happen over
the bad [17]. As a result, the values of λ may be skewed
towards 0 as people are more likely to continue to choose
the probabilistic choice more often. In our work, we aim to
constrain λis by asking about two concrete states rather than
probabilistic ones.

Next, we describe our algorithm to learn additive reward
functions that still asks few questions but also asks questions
that are less susceptible to human error.

III. MONTE CARLO LEARNING ALGORITHM FOR
ADDITIVE REWARD FUNCTIONS

We contribute an algorithm that asks people for their
preferences between two concrete states with concrete values
for each feature si∑

i

λi ∗ ri(si = s1, a)
?

>
∑
i

λi ∗ ri(si = s2, a) (6)

Because the states are not probabilistic and we are not
asking for numerical values, related work shows that people
should find this exercise to be understandable and that their
preferences are consistent over the length of the survey.

The algorithm to determine the pairs of concrete states to
ask about is a Monte Carlo method in which we generate
a set of hypothesis λs and choose a pair that best divides
the hypothesis space in half. Like the other methods of
preference elicitation, dividing the space in half ensures
that the algorithm asks relatively few questions (log in
the number of hypotheses). The last hypothesis best ap-
proximates the person’s preferred scaling factors with the
error rate decreasing as the number of hypotheses increases.
Additionally, because preferences form linear inequalities, it
is also possible to solve the linear program to approximate
λ like IRL does.

Next, we describe the algorithm in detail and present
results to show the success of the algorithm.



A. Problem Definition

Concretely, let a state s be factored into features 〈si〉 that
reflect the tradeoffs that users are making to determine their
preferences (e.g., time, distance, interruption, etc). Addition-
ally, let concrete state,action pair scenarios with specific
feature values be denoted σ where σ.s and σ.a refer to the
scenario’s state and action respectively. The additive reward
function of a state,action pair R(s, a) =

∑
i λiri(si, a) is the

sum of scaled subrewards ri(si, a) computed over the state’s
features. Without loss of generality, we require the values of
each subreward to be normalized ri(si, a) ∈ [0, 1], where
values towards 1 represent the better features. The goal of
our LearningImportance algorithm is to learn the values of λi
subject to the constraints that ∀i, 0 ≤ λi ≤ 1 and

∑
i λi = 1.

Note that because of the subreward normalization, ∀λi ≥
0. Proof by contradiction. If there was a λi < 0, the higher
the subreward the lower the product λi ∗ ri(si, a). This
contradicts the requirement that feature values near 1 are
better. The subreward function could instead be negated (and
renormalized) so that λi is positive. Additionally, without the
constraint

∑
i λi = 1, there are an infinite number of valid

scaling factors (e.g., for numFeatures = 2, λ1 = λ2 = 0.5 is
equivalent to λ1 = λ2 = 1.0)

B. Algorithm Overview

Our LearnRelationship algorithm is outlined in Algo-
rithm 1. We instantiate the algorithm with a number of
features numFeatures and a set of concrete state,action sce-
narios that would make sense to explain to people. Given
the number of features, the algorithm generates a set of
hypotheses h for the possible values of λ subject to the
constraints defined above (Line 1, Figure 1a). Our algorithm
also instantiates the list of user preferences to the constraint
that

∑
i λi = 1.

While the number of valid hypotheses h is still greater
than 1, the algorithm iterates over all pairs of scenarios to
find the pair which divide the hypothesis space most evenly
(Line 4, Figure 1b). We use a Monte Carlo method to find
the best scenario pairs rather than computing the true area
of the hypothesis space. When the user responds with their
preference of either (s, a)1 or (s, a)2 (Line 5), the algorithm
generates the correct preference inequality (Lines 6-10), adds
that preference to the list of preferences (Line 11), and
then iterates through h to remove the hypotheses that are
invalidated by the new preference (Line 12) (Figure 1c).
It repeats the process until it narrows down the hypothesis
space to a single hypothesis (Figure 1d). Then, it finds a
solution λ (Line 14).

We next discuss the details of each function in turn.

C. Generating scenarios

Because our algorithm asks about concrete state-action
scenarios in a survey form, those scenarios must be explain-
able and understandable to people. We recommend making a
list of scenarios by hand that are easy to describe to users in
order to ensure that they meet this requirement. In practice,
we have not found the particular scale or values of these

Algorithm 1 LearnImportance(numFeatures, scenarios)
1: h ← GenerateMonteCarloHypotheses(numFeatures)
2: preferences ←

∑
i λi = 1

3: while |h| > 1 do
4: (σ1,σ2) ← FindBestPair(h, scenarios)
5: betterScenario ← Ask(σ1,σ2)
6: if betterScenario = σ1 then
7: pref ← ∑

i λi(ri(σ1.si, σ1.a)− ri(σ2.s, σ2.a)) > 0

8: else
9: pref ← ∑

i λi(ri(σ2.si, σ2.a)− ri(σ1.s, σ1.a)) > 0

10: end if
11: preferences ← preferences ∪ pref
12: h ← RemoveHypotheses(h, pref)
13: end while
14: return FindSolution(preferences)

scenarios to have an impact on the ability to accurately learn
λ, except values spanning each feature be used.

As an example, suppose the problem is determining user
preferences about how often a learning algorithm can query
them, and there are two features - a user interruption level
computed on a scale [1, 10] and the number of hours ago that
the last query was asked [0, 24]. While a valid scenario is any
combination of these two features, it may not be easy for a
user to imagine a situation where their interruptibility was
5.346 and they were asked 8.82 hours ago. Instead, we could
create concrete scenarios that require the interruptibility be
given in whole numbers and last question asked hours ago
could be [0.5, 1, 2, 4, 8, 24] (hour values that are relatively
easy to think about). The generated scenarios should be easy
for a user to understand without much explanation.

D. GenerateMonteCarloHypotheses

We generate a uniform random set of hypotheses for λ
subject to our constraints that 0 ≤ λi ≤ 1 and

∑
i λi =

1. Each hypothesis is in R|λ|−1, as λ0 can be completely
explained by the remaining features. As with all Monte Carlo
methods, increasing the number (and therefore the density)
of hypotheses increases the accuracy of the learned λ. In
our experiments section, we vary the number of generated
hypotheses to show how the accuracy of λ increases.

E. FindBestPair

The additive reward for each scenario is R(s, a) =∑
i λiri(si, a). If a user preferred scenario σ1 over σ2, we

can generate an inequality∑
i

λiri(σ1.s, σ1.a) >
∑
i

λiri(σ2.s, σ2.a)

or
∑
i

λi(ri(σ1.s, σ1.a)− ri(σ2.s, σ2.a2)) > 0 (7)

which forms a plane through the hypothesis space h and
invalidates hypotheses that do not satisfy the new preference.

Let invalid(h,pref) be the number of hypotheses in h
rendered invalid by the preference. FindBestPair iterates



(a) (b) (c) (d)

Fig. 1. a) The LearnImportance algorithm first GeneratesMonteCarloHypotheses for λ where
∑

i λi = 1 (here |λ| = 2). b) The algorithm searches the
through all pairs of scenarios to FindBestPair that cuts the hypothesis space in half. c) When it finds the best pair, it asks the person for their preference
and removes the invalidated hypotheses. d) Then, it repeats the process of finding a new pair of scenarios, asking, and removing the invalid hypotheses.

through all pairs and finds scenarios σ1 and σ2 that minimize

abs(invalid(h, pref)− |h|/2) (8)

where pref is an equality like Equation 7. In other words, it
finds the pair of scenarios that best splits the hypotheses in
half. Dividing h in half each time through the loop (Line 3)
implies that the number of user preference questions needed
to learn λ is log2(|h|) questions.

F. RemoveHypotheses

Once the best pair is found, the user is asked for their
preference, listing the features of each scenario. Then the
algorithm generates the inequality preference pref based
on their response. The RemoveHypotheses function iterates
through all hypotheses in h, determining whether each is
valid by setting in the hypothesized values of λ into the
inequality, and removing those from the list that are invalid.
The hypotheses remaining in h after RemoveHypotheses
satisfy all preference inequalities in preferences.

Alternatively to removing hypotheses, it is possible to
redistribute the invalid hypotheses in the valid area keeping
the number of hypotheses the same over time. This process
will increase the accuracy of the algorithm because there are
more hypotheses to divide in half at each step, but at the
cost of possibly asking the person more questions.

G. FindSolution

The FindSolution algorithm could use the remaining hy-
pothesis as its approximation of λ. As the number and
density of hypotheses increases, the error of the remaining
hypothesis decreases because the valid hypothesis area is
more constrained [10].

It is also possible to evaluate the linear program of
the preference inequalities that were generated through the
algorithm to constrain the hypothesis space. An algorithm
such as the simplex algorithm [18] find the valid area within
the inequalities and and find the minimum or maximum point
subject to another constraint (e.g., minimize or maximize the
distance from (0,0)) To understand how the selected scenar-
ios impacted the preference inequalities, we will evaluate the
linear program in our following experiments.

Next, we present experiments towards demonstrating the
use of our algorithm on an example additive reward problem.

IV. EXPERIMENTS

In order to understand how our algorithm performs on
real-world tasks, we present our experiments to evaluate
its use on an example robot application with an additive
reward function. We first describe our application and the
personalized reward functions that we would like to learn.
Then, we describe our surveys of real people to understand
the usability of the scenario comparison questions for our
application. Finally, we present our simulated results to learn
random scaling factors λ with different numbers of generated
hypotheses and different types of generated scenarios for
|λ| = 2 and 3 (number of constraints in the example).

A. Example Application: Robots that Request Human Help

Our interest in learning additive reward functions stems
from our work human-robot interaction. We focus on robots
that perform tasks in human environments and request help
from humans when necessary (e.g., to push elevator buttons,
pour coffee, or perform other manipulation tasks as our robot
has no manipulators). Its state includes information about its
own location as well as information about offices and people
in the environment. In order to determine where to navigate
in order to ask for help, our robot determines the offices that
are closest to its current location and the location where it
will need help (e.g., the elevator, kitchen, etc). Additionally,
because the robot is in our human environment long-term, we
realize that it must also take into account a “cost” of asking
each person for help, in terms of how interruptible they are,
how frequently they help, and the last time they were asked.
As a result, our robot minimizes the sum of three features
computed over the state to determine where to navigate and
who to ask for help:

argmin
lo

COT(lcurr, lo) + COA(lo, ιo, fo, to) + COTH(lo, lhelp)

• COT(lcurr,lo): distance to travel from current location
lcurr to office lo,

• COA(lo,ιo,fo,to): cost of asking at lo for help, based on
their interruptibility ιo, frequency of help fo, and the
last time to they helped,

• COTH(lo,lhelp): distance to travel from the office lo to
the location of help lhelp with the human.

In our problem, our three features: cost of asking (COA)
and the cost of traveling with and without the human (COT
and COTH) are independent and additive. While we could



manually tweak subreward functions so that the values are
roughly in the range to get to our desired behavior, this takes
time and is subject to error. Because each person has different
preferences, determining the COA and COTH for each
office is infeasible without asking them for their preferences
but is also infeasible to require them to demonstrate their
preferences. We would like the people in our building to
fill out a survey of their own preferences for when they get
asked for help in order to increase their satisfaction with the
robot and likelihood that they will continue helping it over
time. The survey should not be too long in order to increase
the likelihood that it gets filled out [16], and should include
questions that are easy to answer and not susceptible to error.

Using our algorithm, we will train 3 scaling factors for
our three subreward problems as a function of our features:

λ1 ∗ r1(COT, ask(lo)) + λ2 ∗ r2(COA, ask(lo))
+λ3 ∗ r3(COTH, ask(lo)) (9)

Interestingly, in this problem, we also have a secondary
additive reward learning problem in relationship between our
3 COA features - lo,ιo,fo, and to - to compute the COA for
the larger reward function:

λ4 ∗ r4(ιo, ask) + λ5 ∗ r5(fo, ask) + λ6 ∗ r6(to, ask) (10)

We took a two part approach in order to learn these
scaling factors. First, we deployed a survey with 50 of
these comparison questions in order to evaluate the con-
sistency of responses and the ease of understanding from
participants. These questions were not dynamically generated
using our algorithm; instead they were static and the same
for each person. Then, we performed simulated experiments
to understand how our algorithm performed with different
preferences, scenarios, and numbers of hypotheses.

B. Survey Results

We conducted a web survey about participants preferences
for what conditions and how frequently they would be will-
ing to help our robot. In the first half of the survey, subjects
were shown a partial map of our building with different
configurations of people in offices who could be available,
different locations of the robot, and different locations for
receiving help - the elevator or the kitchen to make coffee.
They were asked which person the robot should choose to
ask for help (Figure 2). In the second half of the survey,
participants were told that they were the ones being asked
for help and answered questions about their willingness to
help the robot under different conditions of interruptibility,
recency of the last time the robot could have asked for help,
and frequency of the number of questions the robot could
ask per week. Thirty participants were recruited through
a local recruiting website for human-subject studies. The
survey contained 50 questions and took about 45 minutes
for participants to complete.

Participants were able to successfully answer all of our
concrete scenario comparison questions and did not ask us
to clarify the scenarios or the instructions. As expected,

Fig. 2. In the survey, participants were asked which of two people (orange
and green) should help a robot (center in blue) use the elevator (pink box).
For example, the people here are equidistant from the elevator but have
different availability and frequency of helping.

Fig. 3. As the number of hypotheses increases for |λ| = 3, the error rate of
the solutions decreases regardless of the evenness of the scenarios chosen.

they did respond that the 50 questions was extreme for an
online survey format. We analyzed the results to understand
if and when participants’ responses began conflicting with
previous answers. Importantly, while participants did tire
of the questions and become careless in their responses
(sometimes conflicting with previous answers), the first 10-
20 questions depending on the person were consistent. This
maximum number of questions is in line with related work
in survey responses and indicates that our questions are not
more susceptible to human error as the questions asking
about probabilities.

C. Simulated Results

In order to understand how our algorithm performed
with different scenarios and different numbers of generated
hypotheses for random scaling factor preferences, we per-
formed a series of simulated experiments. In the experiments,
we randomly generated sets of true λ such that

∑
i λi = 1,

and then ran our algorithm with auto-generated responses to
the Ask questions based on the true λ. In total, we tested
30 random λs for each condition, varying |λ| = 2 or 3,
the number of hypotheses (number of queries), preference
solution analysis, and types of scenarios generated.

First, while it is possible to use the remaining hypothesis
as the solution for our algorithm, we analyzed the linear
inequality preferences to find the minimum and maximum
distance solution from (0,0) based on these constraints us-
ing the simplex algorithm. Notice that these solutions may
not satisfy the

∑
i λi = 1 requirement. Figure 3 shows

the average minimum and maximum distance error of the
solution λ from the randomly generated true λ for |λ| = 3.



The error rates of both solutions are parallel and decreasing
with the number of hypotheses indicating that the preference
constraints are narrowing down λ from the high and low
values. In our scenarios, the minimum distance solution from
(0,0) had less error than the maximum distance solution with
average difference 0.14.

Next, we evaluate our choices in scenarios and the re-
sulting accuracy. We generated both evenly spaced scenarios
for our robot navigation example (whole number evenly
spaced distances, values of a potential cost of asking, and
cost of traveling with the human) as well as unevenly
spaced scenarios (interruptibility in tenths, hours ago of
last question [0.5, 1, 2, 4, 8, 24, 48, 168], and frequency
of questions per day [0.05, 0.1, 0.5, 1.0, 2.0, 5.0]). Our
subreward functions map these value to [0, 1] in similarly
uneven spacing. Because these scenarios dictate the dividing
hyperplanes through the hypothesis space, it is possible that
they could affect the error of the learned λ. The grey lines
in Figure 3 represent the evenly spaced conditions and the
black dashed lines represent the uneven ones. The differences
between the lines is negligible compared to the number
of generated hypotheses, indicating that the algorithm is
accurate irrespective of the scenarios.

Finally, we compare the number of hypotheses or ques-
tions generated compared to the accuracy of the solution
based on the size of λ. As Figure 3 shows, as the number
of hypotheses and number of questions = log(hypotheses)
increases, the error decreases. With 5000 hypotheses or 12
questions, the algorithm is able to learn the solution with
0.02 (s.d. 0.1) error on average. The high standard deviation
implies that most of the solutions had 0.0 error. For |λ| = 2,
the algorithm required only 5 questions on average to reach
error 0.015(s.d. 0.05) although increasing the number of
hypotheses to 5000 reduced error to 0.0(s.d.0.001). Rather
than adding 10 times as many hypotheses for each |λ|
increase, it is possible to redistribute the hypotheses in the
valid area rather than removing them as we mentioned above.
This would reduce the computation of iterating through all
hypotheses to find the pair that best pair of scenarios that
divides them without sacrificing accuracy.

V. CONCLUSION

Many robots compute reward functions over their states
and actions to determine their optimal policy. We focused
on learning additive reward functions for states that can
be factored into features. As an example application, we
described our human-robot interaction interests in which a
robot determines who in the environment to ask for help
when it cannot perform an action. This application requires
learning the importance relationships between navigation
time, human interruption and travel cost features.

While there have been many solutions to solving this prob-
lem, we showed that they can be error-prone when novices
train them. We contribute a novel Monte Carlo algorithm
for eliciting preferences from people including novices and
learn additive reward functions that learns solutions in log
of the number of generated Monte Carlo hypotheses. In

particular, our algorithm asks people for their preferences
between two concrete state,action scenarios and refines its
list of valid hypotheses accordingly. We demonstrate using
a survey that real people can understand the questions and
answer accurately. Then, we provided simulated results to
show that the error decreases as the number of hypotheses
increases and that the specific concrete scenarios that the
algorithm asks about do not affect the accuracy. We conclude
that our algorithm is less susceptible to human error than
prior work with learning time proportionate to the number
of hypotheses.

ACKNOWLEDGMENTS

This work was partially supported by National Science
Foundation award number NSF IIS-1012733 and a National
Physical Science Consortium Fellowship. The views and
conclusions contained in this document are those of the
author and should not be interpreted as representing the offi-
cial policies, either expressed or implied, of any sponsoring
institution, the U.S. government or any other entity.

REFERENCES

[1] C. Boutilier, T. Dean, and S. Hanks, “Decision theoretic planning:
Structural assumptions and computational leverage,” JAIR, vol. 11,
pp. 1–94, 1999.

[2] P. C. Fishburn, “Interdependence and additivity in multivariate, unidi-
mensional expected utility theory,” Int. Econ. Rev., vol. 8, pp. 335–342,
1967.

[3] R. L. Keeney and H. Raiffa, Decisions with Multiple Objectives:
Preferences and Value Trade-offs. Wiley, 1976.

[4] D. Braziunas and C. Boutilier, “Preference elicitation and generalized
additive utility,” in Twenty-First Conference on Artificial Intelligence
(AAAI-06), 2006.

[5] B. D. Ziebart, A. Maas, J. A. Bagnell, and A. K. Dey, “Maximum
entropy inverse reinforcement learning,” in 23rd National Conference
on Artificial Intelligence, 2008, pp. 1433–1438.

[6] G. Hines, “A study in preference elicitation under uncertainty,” Uni-
versity of Waterloo, Tech. Rep., 2011.

[7] K. Regan and C. Boutilier, “Eliciting additive reward functions for
markov decision processes,” Twenty-Second Joint Conference on Ar-
tificial Intelligence (IJCAI 2011), 2011.

[8] P. Abbeel and A. Y. Ng, “Apprenticeship learning via inverse rein-
forcement learning,” in ICML, 2004, pp. 1–8.

[9] C. Gonzales and P. Perny, “Gai networks for utility elicitation,” in
9th Intl. Conference on Principles of Knowledge Representation and
Reasoning (KR-04), 2004, pp. 224–234.

[10] N. Metropolis and S. Ulam, “The monte carlo method.” Journal of the
American Statistical Association, vol. 44, p. 335, 1949.

[11] A. Y. Ng and S. Russell, “Algorithms for inverse reinforcement
learning,” in ICML, 2000, pp. 663–670.

[12] B.Argall, B.Browning, and M.Veloso, “Learning robot motion control
with demonstration and advice-operators,” in IROS 08, 2008.

[13] M. Eagle and E. Leiter, “Recall and recognition in intentional and
incidental learning,” Journal of experimental psychology, vol. 68, pp.
58–63, 1964.

[14] N. Schwarz and H. J. Hippler, “Subsequent questions may influence
answers to preceding questions in mail surveys,” Public Opinion
Quarterly, vol. 59, no. 1, pp. 93–97, 1995.

[15] N. Schwarz, B. Knauper, H. J. Hipler, E. Noelle-Neumann, and
L. Clark, “Numeric values may change the meaning of scale labels,”
Public Opinion Quarterly, vol. 55, no. 4, 1991.

[16] T. A. Heberlein and R. Baumgartner, “Factors affecting response rates
to mailed surveys: A quantitative analysis of the published literature.”
American Sociological Review, vol. 43, 1978.

[17] W. Weiten, Psychology: Themes and Variations. Wadsworth Publish-
ing, 2011.

[18] G. B. Dantzig, Linear Programming and Extensions. Princeton
University Press, 1963.


