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Abstract

In a number of domains, researchers instrument an interface
or the environment with software and hardware sensors to
collect observational data, but it is often quite hard to label
that data accurately. We are interested in how an agent can
ask many humans at once for help to label its data and we
present two studies towards this goal. First, we investigate
how a computer can automatically elicit labels from users as
they interact with different technologies. Then, we present
a study comparing different algorithms for how an agent de-
cides which users to trust when a lot of people answer the
agent’s questions and the answers are conflicting. We dis-
cuss the implications of the results in each of these studies
and present some ideas for future work towards agents asking
humans questions.

Introduction
Suppose that a robot is navigating an environment to per-
form a task. As it is performing the task, it comes across an
object it has not seen before or cannot recognize. Although
the object may not be directly useful to the robot’s task, if the
robot learns what it is, it may help the robot achieve goals
faster in the future. The engineer in charge of the robot’s task
is currently busy and cannot provide help at this time. The
robot takes a picture of the object and can save the picture to
ask the engineer later or can email the picture now to many
people in the building to ask what the object is. Whenever
the robot asks, it may want to include context about what
was happening when the picture was taken like which room
the robot is in and which direction it is facing, what time of
day it is, and who else is around. The robot may also include
possibilities for what it thinks the object is. All of this infor-
mation may help both the engineer and the email list reply
to the robot more accurately so the robot does not learn the
wrong thing.

Additionally, if the robot decides to email the entire build-
ing, it may receive several replies from different people in
the building. Their answers may be different and they may
have different experience with objects in the room. The
robot uses previous knowledge of who has answered cor-
rectly in the past and which current answer is repeated most
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often to judge which answer is correct. If the engineer cor-
rects the answer later, the robot can update its knowledge
about the people who answered to include whether they were
correct for the new object. In this way, the robot can learn
new information by asking for help and learn which respon-
ders to trust by analyzing their accuracy over time.

We believe it is inevitable that agents will need to interact
with humans as they complete their tasks as the agents may
encounter new scenarios they were programmed for origi-
nally. As part of that interaction, humans will need to give
agents help when needed. There has been extensive research
in the types of help humans can give robots (e.g., (Rybski et
al. 2007) and (Saunders, Nehaniv, & Dautenhahn 2006)).
In collaborative tasks specifically, robots may need to ask
for advice or assistance from humans. The collaborative
control model (Fong 2001) assumes humans and robots to
be partners or collaborators in tasks and that they will help
each other to accurately and effectively achieve their goals.
We’re interested in how an agent, robot or otherwise, can ask
humans questions to label its data, as is often done with ex-
perience sampling (Larson & Csikszentmihalyi 1983). More
specifically, we want to maximize the proportion of correct
labels users provide so that data is as accurate as possible
by either asking few people very good questions or many
people to learn who to trust.

We present two studies conducted to better understand
how to help agents ask humans to help in labeling data accu-
rately. The focus of our first study is to understand how vary-
ing an agent’s questions affects the accuracy of users’ re-
sponses. Additionally, we investigate how the optimal com-
bination of different question features will change based on
the domain they are provided in. We vary the agent’s ques-
tions across five dimensions taken from the HCI literature,
including dimensions for usability and contextual informa-
tion. We present guidelines for wording questions based on
the results of the study.

In our second study, we assume that it is cheap to ask
many users the questions developed from the first study (i.e.,
asking a crowd, asking people online) and evaluate how
agents should calculate trust in users when they receive mul-
tiple conflicting responses to their questions. Specifically,
because agents’ questions may fall into different categories
(e.g., easy vs. hard questions), an agent may trust different
users for different types of questions (e.g., only experts for



hard questions). We use recommender systems as an exam-
ple of agents receiving data that falls into different (product)
categories. We compare the resulting agent actions (e.g.,
recommendations) and user trust distributions between al-
gorithms that include data from all product categories (com-
bined systems) and algorithms that include only data from
one product category (doman-specific systems). We dis-
cuss the results and implications of the work for agents that
may have different users respond to different categories of
questions. In the next section, we discuss how to determine
which data that agents should ask about and how they should
ask about it.

Related Work
Researchers often instrument an interface, robot, or the en-
vironment with sensors to collect observational data but it
can be difficult or costly for a human expert to label that
data accurately. Machine learning algorithms such as semi-
supervised learning and unsupervised learning try to infer
the labels of the unlabeled data points without any human
intervention (Mitchell 1997). However, it is not always pos-
sible for these algorithms to classify all data accurately. A
learner needs some other way of asking users for accurate
labels. Active learning algorithms try to infer the labels for
the unlabeled points but can request labels for some data, if
necessary (Cohn, Atlas, & Ladner 1994). We are interested
in how different applications can elicit accurate labels for
data from users of those applications.

Requesting Labels From Users
Because people may understand one part of the state-space
more another, some data may be easier or less costly for
people to label than other data points. Cost-sensitive ac-
tive learning algorithms maximize the expected accuracy of
the resulting classifier while minimizing the cost of request-
ing labels (e.g., (Margineantu 2005)). It may be more cost-
effective to ask users to label many ”easy” points that each
may be less informative for the classifier instead of a few
more difficult-to-label points that are very informative, be-
cause the combination of the many points results in a more
accurate classifier. Similarly, when multiple users available
to ask, it may be easier or less costly to ask some users rather
than others. It may be more expensive to ask experts to la-
bel data than novices. However, the novices may be more
likely to give inaccurate labels. Proactive learning algo-
rithms maximize the expected accuracy of the resulting clas-
sifier while minimizing the cost of requesting labels from
users (Donmez & Carbonell 2008). Even if a novice user
is very inexpensive to query, if they provide very inaccurate
labels, it may not be cost effective to ask that user a question.

However, both of these algorithms assume that the cost
distribution of data or users is known ahead of time. Addi-
tionally, proactive learning assumes some prior knowledge
about the expertise of users ahead of time. While this prior
knowledge about expertise may be available in some appli-
cations, it may be cheaper to ask many new or unknown
users a question instead of waiting for a few experts. For
example, posting a question to an online forum is a cheap

way to elicit a fast (and reasonably accurate) response from
many unknown users instead of waiting for a known user to
respond. In these situations, we will show it is possible to
develop an online trust model with the responses of the users
using experts algorithms.

Eliciting Accurate Labels from All Users

If an agent does not know who to trust before it asks a
question, it must ask questions that are understandable by
all users. Recently, researchers demonstrated that a person
could accurately help an email sorter to sort emails when the
computer included contextual information about the email
scenario as it prompted the user for a classification of that
email (Stumpf et al. 2007). In this study, subjects were pro-
vided different levels of contextual information: either key-
words from the email, rules, or emails the computer iden-
tified as being similar to the one being looked at, and were
then asked to sort that email into a folder. The study found
that although subjects were not always able to correctly la-
bel the emails, they were very accurate. However, the study
did not relate the amount of contextual information they pro-
vided nor did they discuss how varying the amount of con-
textual information might affect the accuracy of the subjects
feedback. Additionally, subjects in the study were able to
provide supplemental feedback about why they gave emails
a particular label in order to teach the learner which features
were most important in making the classification. However,
the study did not relate the contextual information the agent
provided to the amount or quality of supplemental informa-
tion the subjects supplied.

A follow-up study found that the additional information
subjects provided was largely driven by their understanding
of how the system worked and how the system explained
contextual information to the user (rule-based, keyword-
based, etc.). This finding is supported by work in re-
trieval feedback (Salton & Buckley 1990) in information
retrieval applications that identifies the differences between
the sensor-level context that computers use and collect and
the high level activities that users think about. If an agent
provides contextual information to elicit information at the
wrong level, a person may not be able to understand the data
point or situation they are asked to classify. For example, in
image retrieval, a computer may use color and pixel colors
to determine a label for the image while people may look at
high level shapes and textures (Rui et al. 1998). The pre-
vious email study found that subjects were able to provide
more and better supplemental information when given the
rule-based context instead of keyword-based because sub-
jects reported they understood it better. Because it is often
difficult for a computer to communicate at a high level with
a user or for a person to understand the pixel level represen-
tation of a picture, it is necessary to balance the improve-
ment in accuracy and increase in supplemental information
that comes with providing high-level context with the costs
of calculating that context. This balance depends on how
the users of each particular application understand the low-
level context in the domain, the task, and the content of the
questions the agent asks.



Usable Elicitation
In addition to providing context while asking questions,
other work has focused on making the classification task eas-
ier for people. Some user interfaces provide the user with a
prediction or suggestion for the answer to a classification
task, to cut down on the amount of work the user has to do:
confirm an answer vs. generate an answer (e.g., (Stumpf et
al. 2005)). An interface may automatically fill in fields in a
form or provide a prediction for which folder to sort a piece
of email into (e.g., (Faulring et al. 2008)).

Studies on context-aware, expert, and recommender sys-
tems all show that providing users with the level of uncer-
tainty in the systems’ predictions improves their overall us-
ability (e.g., (Banbury et al. 1998),(Mcnee et al. 2003),(An-
tifakos, Schwaninger, & Schiele 2004)) In one task where
users had to remember a set of numbers, an imperfect mem-
ory aid that displayed uncertainty information was shown to
increase the percentage of correct numbers the users recalled
and decrease the percentage of incorrect numbers they re-
ported, when compared to the same display without the un-
certainty information (Antifakos, Schwaninger, & Schiele
2004). Regardless of the exact confidence values, users
showed improved performance. However, it is not clear
whether usability affects the accuracy of the labels obtained
when asking questions.

We will first describe a study in which we evaluate how
agents can elicit accurate answers from all types of users by
varying the wording of its questions. Although, we may not
expect to get the same accuracy from novices as from ex-
perts, we aim to maximize accuracy over all users. Then, we
assume that asking questions to many people is cheap (i.e.,
in a crowd or over the internet) and that an agent can expect
responses from possibly unknown novices and experts. We
discuss how an agent can use the answers it receives to de-
termine which users to trust in future questions. Finally, we
discuss possible future work in asking questions and subse-
quently learning from users’ responses.

Asking Questions
We are first interested in how an agent can elicit greater pro-
portions of correct answers and generalizable information
from people by varying the wording of its questions. Specif-
ically, we examine the impact of varying the content of the
questions in a knowledge elicitation task along five dimen-
sions previously described in the related work, namely ex-
plaining uncertainty, amount of contextual information, low-
level vs. high-level context, suggesting an answer, and re-
questing supplemental information, to understand how each
impacts how people label data. We measure the proportion
of correct answers people provide as well as the quality of
supplemental information provided and users’ opinions of
the questions. Additionally, because the wording of ques-
tions depends on the type of data that needs a label and the
presentation of the agent’s question depends on the interface,
we present this approach in three different domains: a desk-
top application on a large screen computer, activity recog-
nition on a mobile device, and learning by demonstration
on a robot to understand what combinations of dimensions

will be more effective in the three domains and why. We
provide results for the impact of the dimensions in both do-
mains, validate those results against community advice from
each domain about how to ask questions in each, and finally
discuss the differences in the results between the domains.

Method
Subjects in our studies were told that they were testing new
technologies (an email sorter, a physical activity coach, and
a robot) we had developed that learn by asking questions.
Because people are typically good at classifying data from
each of these domains, the application would ask them for
help if it could not correctly label the data itself.

The participants were given a primary task to perform
that was indirectly related to the learning application, and
were told they had a limited time to complete it. Partici-
pants worked on their own task while the application ob-
served them and collected data. They were informed that
they could help answer the application’s questions when it
interrupted their task if they had time and that the applica-
tion would continue to try and learn whether or not they an-
swered questions or skipped them. They were also told that
they would be given a second similar performance task that
the application could help them complete more quickly if
they helped it learn during this first task. However, partici-
pants were also reminded that answering questions was not
their primary task and that doing so may slow them down in
completing that task.

All three study applications are modeled based on the idea
that there is some underlying active learner that identifies
data points to classify and uses an agent to ask users for the
labels it needs. The data that the agent asks users about in the
tasks all have single labels that are easily confirmable, in or-
der to make the study feasible. The agent must interrupt the
user’s primary task in order to ask the participant a question
but the answer to the question will ultimately improve the
learning application’s performance. We model the tradeoff
between future incentive of increased application accuracy
and present delays of answering questions to understand of
how people answer questions under pressure (i.e., ignoring
the application questions altogether or rushing to give fast,
instead of well thought out, responses).

To understand how an agent can ask questions in differ-
ent domains to optimize the correctness of the responses it
receives and the quality of supplemental information it re-
quests, we vary the wording of the questions it asks about
based on the five dimensions presented above and measure
both the correctness and quality of the responses and the
user’s opinions of the questions. Subjects were given 12
minutes to complete their primary task. After either com-
pleting the task or after time had expired, participants were
given a survey about their experiences with the questions.
After completing the survey, they were told there was not
enough time to conduct the second ”performance” task and
were dismissed after payment.

Tasks
We will now describe the three tasks that we had users per-
form: email sorting, physical activity recognition, and teach-



Figure 1: The email agent displayed a question when it could
not determine which folder the email belonged.

ing a robot to recognize block shapes. The agents and ac-
tive learning mechanisms in all three tasks were Wizard-
of-Oz’ed to control which data points the users were asked
about and when they were asked about them.

Email Sorting The participants’ primary email task was
to go through some provided email about an uncoming
academic conference, and consolidate all the changes that
needed to be made to the conference schedule and website.
Subjects were given a Microsoft Excel spreadsheet of infor-
mation about conference speakers, sessions, and talks and
asked to make changes to the spreadsheet based on changes
conference participants had emailed about (Steinfeld et al.
2006). They were also given an email application filled with
conference emails and were told that the learner had already
sorted most emails into folders based on the type of changes
that needed to be made to the Excel spreadsheet. Subjects
were told that the application classifies each email in the in-
box into a folder and if it cannot do so, it sorts the email into
the Unsorted folder and will ask them to classify it into the
appropriate folder (i.e., provide the appropriate label). Par-
ticipants only had to make changes to the spreadsheet based
on emails from two folders plus the ”Unsorted” emails that
could be sorted into one of those two folders. The applica-
tion would pop up a question when the subjects clicked on
the ”Unsorted” emails (See Figure 1)

Activity Recognition For the second part of the experi-
ment, the subjects’ primary task was to perform physical ac-
tivities from a list provided. They were told they were test-
ing a new physical activity coach on a handheld device that
could detect the different activities they performed. They
were given a list of 12 activities and the materials to per-
form them and told they had 12 minutes to complete as many
as possible. Activities included walking around the room,
jumping up and down, putting with a golf club, and using
a hula-hoop. If the activity recognizer did not understand
what the participant was doing, the participants were told it
would interrupt the activity and display the questions on the
mobile device. More concretely, the agent assigns a label or
exercise name to sensor data as a user is performing an exer-
cise, and if it is uncertain about the exercise it interrupts the
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Figure 2: Participants were interrupted to ask which activity
they were performing.

user. An application like this one may record users’ activi-
ties for their doctors to analyze their physical activity levels,
and thus users have an interest in answering its questions
to ensure it correctly identifies when they are performing a
physical activity. Subjects were told to respond to the mes-
sage on the device to tell the coach what activity they were
performing (See Figure 2).
Teaching a Robot For the third part of the experiment, the
participants’ primary task is building structures out of blocks
in a timed setting. They sat in front of the robot and were
given a set of 50 wooden blocks, containing 5 different col-
ors and 6 different block shapes (Figure 4(a)). The subjects
were given 4 pictures of block structures, each composed of
20-35 blocks, to build in 12 minutes (Figure 4(c)). The sub-
ject was told the robot was performing a block shape recog-
nition task. Humans are better at recognizing objects and
robots can leverage this by interrupting the human to ask
questions about those objects. As subjects built the struc-
tures, the robot interrupted with questions claiming it could
not determine the shape. The robot asked about 2 blocks
for each structure the participants built, for a total of 8 ques-
tions, and the participants were to respond verbally to the

(a) Robosapien V2 robot (b) Block Structure

Figure 3: The Robosapien V2 robot watches participants and
asks questions about the blocks it cannot recognize.



robot with their answers. If participants had time while per-
forming their primary task, they could help teach a robot to
recognize block shapes by answering its questions.

Measures
We collected the subjects’ responses to each question for
analysis. Because an agent would benefit more from correct
answers to questions rather than incorrect ones, we assessed
the user responses to the questions primarily based on cor-
rectness, but also on the quality of supplemental informa-
tion when available. We also gave subjects surveys about
their opinions of the applications asking questions including
whether they found them annoying.

Correctness Users’ responses were classified as correct
answers if their last answer (some users changed their
minds) was correct and incorrect otherwise. For example, if
a subject disagreed with the suggestion, but gave an equally
correct reference, it was classified as correct.

Qualitative After completing the task, participants were
given questionnaires on their experiences with each technol-
ogy. They were asked whether they thought the applications
questions were annoying and whether they found each of the
five dimensions particularly useful. Answers were coded as
either ”Yes” or ”No” to each of the six questions. Addition-
ally, participants were asked whether it was easy or hard to
answer the questions on a Likert scale from 1 (very easy) to
5 (very hard).

Results and Discussion
We evaluated both our quantitative and qualitative results for
each study. Chi-Square tests were used to analyze the signif-
icance of the categorical response (correctness) against the
categorical independent variables (our five dimensions). T-
tests and One-way ANOVAs were used to analyze the sig-
nificance of the secondary continuous response (quality of
supplemental information) against the independent variables
(our five dimensions). We find, for example, that partic-
ipants on the email task were more accurate when suffi-
cient context was provided compared to extra and no context
(Figure 4(a)). Participants also were more accurate when
they were provided suggestions in the email domain (Figure
4(b)). Participants provided less informative supplemental
information to the agents when the agents provided them
extra context in the question (Figure 4(c)). Based on the
set of results for each domain, we define a set of guidelines
for each domain (presented below) that an agent should use
when planning the wording of questions to present to users.

1. Email Sorting - explain uncertainty, provide sufficient
low-level context, suggest an answer, and request supple-
mental information

2. Activity Recognizer - do not explain uncertainty, provide
sufficient low-level context, provide suggestions, and re-
quest supplemental information

3. Teaching a Robot - explain uncertainty, give extra con-
textual information, give a suggestion, and ask users for
additional information

Note that in the robot task, we did not vary the questions
along the high vs. low context dimension because the
robot did not have enough sensors to vary the context in
that way. We validated those guidelines against advice we
received from domain experts on how to present and request
information from people specifically for each domain.
Through our evaluation, we found that the agents that use
our guidelines elicited more correct answers and/or better
quality supplemental information and/or higher usability
ratings than the community advice. We now discuss the
agent assumptions we made for each domain and the impli-
cations of the similarities and differences in the guidelines
for the domains.

Domain Guidelines Now that we have identified the most
appropriate way to phrase a question to improve labeling,
we will now assume that, we hypothesized that the agents’
questions would vary widely between domains. However,
we found that our results led us to nearly the same guide-
lines for the email and mobile device domains and very dif-
ferent guidelines for the robot domain. First, although there
were differences in the email and mobile domains, the sub-
jects’ prior knowledge about the tasks was a more important
influence on the outcome. This result implies that it is not
necessarily the domain or the task that drives differences in
guidelines, and that the nearly identical email/mobile guide-
lines are applicable in a more general set of tasks, namely
those where users have domain knowledge that they can ap-
ply in helping the knowledge elicitor.

However, we find that the robot guidelines are very differ-
ent from the email and mobile guidelines. The robot’s ques-
tions were given verbally about spatial locations for the user.
Although subjects had prior knowledge about block shapes,
they needed to perform a verbal-visual translation to answer
the robot’s questions which takes longer time and more con-
centration than the email and mobile tasks. Additionally, the
ambiguity in spatial language requires additional context for
the subjects to confirm they found what the robot was asking
about. Because both of these classes of problems are com-
mon and we have validated them, other researchers can use
these guidelines today to increase the accuracy of their la-
bels without using our approach to find new guidelines and
without additional validation. This saves time and effort that
could be dedicated to using the accurately labeled data in
new and interesting ways.

Next, we assume that an agent can use our guidelines to
ask questions to a general audience and receive many re-
sponses at once. The agent must then determine which users
and responses to trust to use the information effectively.

Developing Trust
Given that it is relatively inexpensive for an agent to ask
questions to a large number of people at once (e.g., online
forums, etc.) and determine different categories of data to
ask about (e.g., easy or hard questions), we are then inter-
ested in how an agent can determine which responses to trust
when it receives many conflicting answers to its questions.
Specifically, we examine how an agent’s actions differ as



(a) Subjects’ Correctness by Amount of Con-
text (Email)

(b) Subjects’ Correctness by Suggestion
(Email)

(c) Subjects’ Quality of Supplemental Info.
(Activity Recognition)

Figure 4: As the amount of context and suggestions varied, the participants’ accuracy changed as well as the amount of
supplemental information they provided.

we vary whether the agent determines which reviewers to
trust and actions to take for each separate category of situ-
ation versus one trust determination based on all categories
combined. As an agent asks questions, receives answers,
and takes actions using the responses (online), it recalculates
who it trusts based on the success of the action using an ex-
perts algorithm (e.g., (Auer et al. 1995) and (Littlestone &
Warmuth 1994)).

For this work, we use a recommender system application
where an agent’s action is to predict (on a scale from 1 to
5) whether a user will like a particular product based on nu-
meric recommendations from reviewers in the system. The
recommender system is either comprised of a single cate-
gory of products (one domain specific system for each of
DVDs, Books, Houswares, etc) or comprised of all products
together (one combined system of all recommendations in
all categories). The recommender system ”asks” all the re-
viewers for reviews of products and provides a prediction
to the user based on the reviews. The agent decides which
reviewers to trust for each individual user with a probability
distribution over the reviewers. We define the most trustwor-
thy reviewers (for a particular user) as those who provide
reviews closest to the user’s actual reviews given in hind-
sight after the user receives the prediction. The probabilities
of the reviewers are updated using the `1 distance from the
agent’s prediction to the actual score users gave the products
(on the same 1 to 5 scale) (loss function).

We expect that the accuracies of the different systems are
largely based on the convergence of the probability distribu-
tion to a steady state. Each domain-specific recommender
takes the same amount of time to converge to find the most
trustworthy reviewers as the single combined recommender,
so it takes the domain-specific recommender N times as long
to find the most trustworthy in every one of the N categories.
By combining categories and assuming that the trustwor-
thy reviewers for each category are the same, the combined
system eliminates much of the convergence time of all the
domain-specific systems. However, intuitively, it seems that
a user might trust some reviewers about their DVD selection
but may not trust them at all for books or housewares. Al-
though it may take longer, the domain-specific recommender
provides more accurate predictions when the trustworthy re-
viewers are different in each category. We analyze how of-

ten each recommender system is more accurate to under-
stand whether it is more important to find the trustworthy
reviewers faster or to find more accurate weights for each
reviewer. We will use mean squared error to measure the
accuracy of each of the two types of recommender systems
(domain-specific and combined) for each user.

Method
To test whether combining domain-specific recommenda-
tion systems will decrease the accuracy compared to their
separate counterparts, we built recommendation systems
from three real datasets and analyzed the performance on
a test set of users. We split each of the recommendation
datasets into subsets by categories of products. Each subset
was used for a domain- or category-specific recommenda-
tion system and the full set was used for the combined sys-
tem. We selected a random subset of the users in the dataset
as test users of the systems. We implemented and tested the
two recommendation system agents (domain-specific and
combined) for each test user with two different experts al-
gorithms. Each agent for a new test user started with a uni-
form trust distribution over all current users. As the test user
looked at and reviewed products, the experts algorithm agent
would use the predictions from reviewers it trusts to give the
user a prediction. Based on the test users’ actual satisfac-
tion with the product, the agent then updates the trust of all
the reviewers by comparing the users’ satisfaction to each re-
viewer’s prediction. The agent trusts the reviewers who gave
more similar recommendations as its test user. Our goal is to
maximize the number of correct recommendations the agent
makes to the test users by determining and using the most
similar reviewers to make the prediction.

Product Recommendation Data
We built our experimental framework using data from three
very popular online recommendation systems. Each recom-
mendation system uses collaborative filtering with reviews
on a scale from 1 to 5 that users could choose for various
products they are familiar with. Open-ended reviews were
not included in this data or for our framework.

General Products Our first recommendation dataset was
initially designed to examine the impact of viral marketing



on a popular shopping website (Leskovec, Adamic, & Hu-
berman 2006). Over two years of data collection, 3,943,084
reviewers made 15,646,121 recommendations for 548,523
products. 5813 products were discontinued and were thus
removed from the set. The dataset provides features per
product and features per recommendation. The product fea-
tures provided are ten product categories (i.e., Book, DVD,
Electronics). For each recommendation, the dataset provides
the ID of the reviewer, the numerical recommendation as de-
fined above, the date that the recommendation was given, the
number of people who rated the review, and the number of
people who rated the review as helpful. On average, review-
ers made recommendations for about 100 products, with one
recommending over 12000, and each product had between 3
and 2500 recommendations.
Movies The Netflix dataset contains ”over 100 million
movie ratings for over 480 thousand Netflix customers
from over 17000 movie titles” (net 2008). We use
movie genres for the categories of the domain-specific
recommendation system. Genres are not included in
the Netflix data, so we cross-referenced movie titles
with movie genres and obtained Science Fiction, Fan-
tasy, Special Interest, Kids/Family, Comedy, Western, Ac-
tion/Adventure, Musical/Performing Arts, Documentary,
Drama, and Art/Foreign. Because of the necessity to have
mutually exclusive genres, only the movies with a single
genre were used. This resulted in a smaller dataset of 400
movies and over 4 million ratings. 50 users were randomly
chosen from the set to test.
Music The Yahoo! Research Webscope Music review
dataset contains over 717 million reviews by 1.8 million Ya-
hoo! Music reviewers for 136 thousand songs collected from
2002 to 2006 (Yahoo! Research 2008). Each reviewer was
guaranteed to have rated at least 30 songs and each song
was rated by at least 20 reviewers. There are 20 main genres
of music in the data which were used as our categories for
the domain-specific systems. For each new user, there were
an average of 100,000 reviewers giving advice on all their
songs.

Results

We built the recommendation systems described above and
used them to make predictions about users’ preferences. We
calculate error as the mean squared distance from the recom-
mendation system’s prediction to the user’s actual opinion
(MSE). Our hypothesis is that the combined and domain-
specific algorithms yield the different error rates for each
user. Specifically, we expect that users with reviewers that
are highly trusted in one category and minimally trusted in
others would have higher error from the combined system
which does not distinguish categories. We tested that hy-
pothesis using an ANOVA (Analysis of Variance) on the
MSEs of both systems.

We analyzed each user separately to understand the pos-
sible differences between the datasets as well as the differ-
ences between similarity algorithms and recommendation
systems. We found that approximately one half of our test

users received higher accuracy predictions from the domain-
specific recommender system (∆MSE = .5, std. dev = .4)
(F = 7.14, df = 1, p < 0.01) and half received higher
accuracy predictions from the combined system (∆MSE =
.25, std. dev. = .2) although this was not statistically signif-
icant. As expected, the domain-specific recommenders per-
form better on users with different trustworthy reviewers in
different categories. Combining these different probability
distributions can cause large changes to the relative trustwor-
thiness some reviewers and result in different (and worse)
predictions. However, when the trustworthy users were the
same across categories, there was no reason to keep them
separate and wait for each category to converge. The com-
bined recommender system provided more accurate predic-
tions when the most trustworthy reviewers were most trust-
worthy in all categories.

Because our results show that both recommender systems
provide accurate predictions for some users, we suggest that
a user-dependent selection algorithm is needed to use the
best system for each user. It could test both systems for each
new user and then when the probability distributions have
converged, it can pick the system that has been most accu-
rate thus far. Additionally, a different selection algorithm
could combine only the categories for which the trustworthy
reviewers are the same and leave the other categories apart.

Conclusions and Future Work
In this work, we assume that an agent, like a robot, can act
autonomously in the world but can seek human help when
it is uncertain of its environment. We’re interested in the
language of how an agent can ask humans questions to label
its data most accurately when many (possibly novice) people
can give answers. More specifically, we want to maximize
the proportion of correct labels users provide so that data is
as accurate as possible by asking many people for answers
and learning who to trust.

We have approached the problem of agents asking many
humans for help from two directions - the user side to under-
stand what wording of questions are correlated with higher
proportions of correct answers and the agent side to de-
termine which users to trust once it has responses. We
presented a methodology to explore how users’ responses
change based on the wording of questions and design guide-
lines to allow other researchers to develop agents that re-
ceive accurate responses from humans without having to re-
peat our methodology. Additionally, we show that develop-
ing trust in human responders largely depends on which are
trustworthy in each category of questions.

There are still many open questions on both the user and
agent sides of asking questions. It may be useful for an agent
to ask many users in different locations for answers, to ask
in different interfaces or venues depending on where a user
is currently located, and to decide which set of users to ask
based on a particular metric. For each of these problems, the
questions that an agent asks may vary in order to get the most
accurate answers possible from users. Additionally, when an
agent receives responses, it may need to decide what to do
when waiting for a response, decide which labels belong to
which sensor data if there is a time delay to receive answers,



and possibly relate longer term activities to a single label.
The challenge will be in creating agents that can learn from
humans but that also take into account the uncertainty in re-
sponse rates and responses of their human helpers.
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